

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no2.083

DIVERSITY OF WILD MUSHROOM FROM FOOTHILL REGION OF UTTARAKHAND, INDIA : NEW REPORTS

Vasundhra Sharma* and A. K. Jaitly

Microbiology Laboratory, Department of Plant Science, M.J.P. Rohilkhand University Bareilly-243006, India *Email: researchdhara@gmail.com

(Date of Receiving-08-03-2020; Date of Acceptance-05-10-2020)

The present investigation was undertaken in foothill regions of Uttarakhand from July-2016 to December-2019. A total of thirty four different sites ranging from the roadside areas, grasslands to forests were studied and Mushroom fruiting bodies were collected. A total of One Hundred sixty six fruiting counts were obtained and 68 mushroom genera belonging to 15 orders and 43 families were identified. Mushroom were obtained from organic debris of diversified habitats ranging from humid soil; grassland; leaf litter; living tree trunk; dead wood log of forest zone. Maximum fruiting bodies (75%) were obtained between July to September and minimum i.e., 6% between November – February. Out of all collected mushroom sample the frequency of Mushroom belonging to order Agaricales was 45.18% followed by Polyporales *i.e.*, 27.7%. Comparative statistical study revealed that *Schizophyllum commune* has been the most dense (1.85±0.33) while *Crepidotus variabilis, Schizophyllum commune, Ganoderma applantum* were most frequent (14.71%±0.04) followed by *Laccaria laccata* and *Chlorophyllum molybdites* (11.46%±0.04). The collected mushroom were cultured on PDA medium and their mycelial forms were preserved for further studies.

Keywords : Diversity; Density; frequency; fruiting bodies; mushroom; culture.

INTRODUCTION

Macrofungal fruiting bodies having fleshy, sub-fleshy, leathery, and umbrella like appearance, bearing their spore either on lamellae (gills) or lining the tubes, opening out by means of pores designated as Mushroom (Sharma and Jaitly, 2017). These fruiting bodies falls under the category of gilled mushroom, bracket mushroom, puffballs, coral mushroom, jelly mushroom, stinkhorns, earthstars, birds nest mushroom on the testimony of their sporocarps (Bates, 2006). Taxonomically mainly Basidiomycetes are known as mushroom however also some species of Ascomycetes have been known to produce mushroom like fruiting bodies (Atkinson, 1961). Mushroom are inseparable parts of ecosystem being soil replenisher due to their strong property of degrading cellulose and other organic polymers. The presence or absence of mushroom are useful trafficator to assess the damage or the maturity of an ecosystem (Stametes, 2000). Mushroom in the 21st century has been explored as crucial component for food safety and security. They have rich nutritional value with high content of proteins, vitamins, minerals, fibers, trace elements, limited calories and less cholesterol (Okoro et al., 2012). Besides, they also contain good amount of secondary metabolites and were reported to possessed antioxidant, anticancer, anti-mutagenic, antimicrobial and antiradical properties (Barros et al., 2007). The rate of consumption of fleshy fungi in many countries has increased in recent years and hence it becomes imperative to explore the treasure of wild mushrooms. The

day by day increasing population and its developmental activities are detrimental to ecological diversity. India is rich in diversity, of its fauna and flora consequently, may possess virtuous heterogeneity of Mushroom. The first scientific study on Indian mushroom was handled by Linnaeus in 18th century with the identification and description of Podaxis pistillaris (Thatoi and Singdevsachan, 2014). Several mycologists have reported ethno-mycological usage and additional lists appeared in between 18th to 21st century culminating with this natural resource as wealth of India. The studies on mushroom have been mainly aimed at describing only common cultivating varieties and validating its status but, there are relatively a few studies that have been undertaken on wild mushroom mainly due to their short life span of their fruiting bodies. Ecological value, diversity and economic importance of mushroom are three key aspects in the world of biology (Sarma et al., 2010). However, indigenous knowledge about edible and medicinal mushrooms has not been given significant attention in Foothill region of Uttarakhand. The study area was located between $28^{\circ} 43' - 31^{\circ} 27' \text{ N}$ latitudes and $77^{\circ} 34' - 81^{\circ} 02' \text{ E}$ longitudes, 64% of which is covered with alpine rain forest. The Foothills of Uttarakhand in the south is bounded by Bareilly region of Uttar Pradesh. It has a subtropical climate and the weather is cool to pleasant. The temperature ranges between $32^{\circ}C$ - $4^{\circ}C$. The cities of Uttarakhand have a rich repository of the unexplored macro-fungal wealth due to its varied climatic and topographic conditions. Therefore,

present study has been undertaken to explore the biodiversity of mushroom from Foothill region of Uttarakhand.

MATERIAL AND METHODS

Collection Area

Regular collection visits were conducted in different months during July-2016 to December-2018 from Bareilly to Uttarakhand. Prior and during the collection from selected sites a standard protocol had been followed (Natrajan *et al.*, 2005). The study area has been divided into four sub areas *i.e.*, 1.Nainital; 2.Udham Singh Nagar; 3.Haridwar; 4.Garhwal along with adjacent foothill bordering geographical region *i.e.*, 5.Bareilly (fig1.) A total of thirty four sites were selected from above mentioned sub areas for the collection of fruiting bodies in different environmental conditions.

Collection Procedure

The full bloomed and complete fruiting bodies of fresh samples were photographed with the aid of Nikon D3400 camera and collected from their natural habitats. All of the physicochemical parameters of collection sites were recorded with the help of a multimeter, and a digital thermometer. The entire collected Mushroom were brought to Microbiology Laboratory under aseptic conditions in cooling thermocol containers for further evaluation.

Identification & Isolation

Microscopic examination under microscope (cell image centre Llyod) and further evaluation. Identification had been

undertaken as per mentioned procedure at the sites www.rogersmushrooms.com, www.mushroomexpert.com and comparing the external morphology, pictures and microscopic slides preparations with standard manual and field guides of Christensen (1972); Laessoe (2000); Lamaison and Polese (2005). Isolation of pure culture of fruiting body had been obtained on PDA media and pure forms were stored at 4°C for further biochemical and physicochemical analysis.

Quantitative analysis:

The important quantitative analysis of frequency and density of mushroom species were determined with certain amendments as per Curtis and McIntosh (1950).

(a) **Frequency** (%): This term refers to the degree of dispersion of individual species in an area and usually expressed in terms of percentage. It was studied by sampling the study area at several sites and recorded the name of the species that occurred in each site. Frequency of the collected mushroom was calculated by the following formula:

%Frequency of mushroom species =
$$\frac{Number of sizes in which the species accured}{Total no of sizes} \times 100$$

(b) **Density:** Density is an expression of the numerical strength of a species where the total number of individuals of each species in all the sites is divided by the total number of sites studied. Density is calculated by the equation:

RESULTS AND DISCUSSION

A total of 166 Mushroom samples were collected and identified during 2016-2019 (Table 2, Figure 3). The collected mushroom were found to grew naturally in different habitats under the study having different environmental conditions (figure 3). Most of the collected mushrooms were found to prevail from July to November due to the favorable temperature and humidity for their fruiting bodies to bloom (Table 1). Complete absence of fruiting bodies were recorded in months of January, February, April, May, June and December correlating with the previous findings done in Uttar Pradesh (Chandrawati *et al.*, 2014). Sufficient rainfall occurs during the month of August, thus the emergence of fruiting bodies increased as highest collection percentage in September (30%) of total collection. The occurrence and

Table 1: Average Physicochemical Parameters of Sites

collection per cent of mushroom has been recorded predominantly where pH was ranged from 7.1-7.5 (Table 1). Agaricales and Polyporales emerged out to be the dominant mushroom orders (Fig. 2.) in the studied region with their per cent frequencies of 45.18 and 27.7 respectively. Heloteliales were represented only by one species. Results observed under present investigation, particularly for dominance of Agaricales are in agreement with the results obtained in different forest of India (Swapna et al., 2008; Tapwal et al., 2013). A of total 166 isolates belonged to 102 different species of 15 orders and 43 families (Table 2, Figure 3). Comparative statistical study of Frequency and Density of individual mushroom species (Table 2.) revealed that Schizophyllum commune was the most dense (1.85±0.33) while Crepidotus variabilis, Schizophyllum commune, Ganoderma applantum were most frequent (14.71%±0.04) followed by Laccaria laccata and Chlorophyllum molybdites (11.46%±0.04), whereas jelly fungi were rarely found viz. Dacrymyces palmatus, Auricularia mesentrica. A number of medicinally important mushroom were collected in the study i.e. Cantherallus spp., Ganodema spp., Coprinus spp., Auricularia spp. and substancially more to be explored further. There was a need to grow live tissues in the laboratory, maintain these tissues in the laboratory, and develop the techniques required to domesticate these mushrooms. This rich biodiversity of Foothill region of Uttarakhand needs further exploration to widen the nutritional and medicinal base of the rural population with their conservation, cultivation and commercialization activities.

Site	Code	Temperature	nH	Light (lux)	Moisture
Site	coue	(°C)	pii	Eight (lux)	woisture
Lalkuan	S1	29	7.2	1200	6
Haldwani	S2	33	6.2	1000	3
Kathgodam	<i>S3</i>	25	7.5	800	4
Gola Beraj	<i>S4</i>	26	8	600	8
Dolmar	<i>S5</i>	23	7.8	300	10
Jeolikot	<i>S6</i>	22	7.2	200	9
Amdanda	S7	21	7.2	200	8
Garjiya	<i>S</i> 8	31	5.9	500	3
Kaladhungi	<i>S9</i>	25	7.1	400	5
Ramnagar	S10	22	7.3	500	3
Pantnagar	S11	31	7.5	800	4
Haldi	S12	29	7.3	700	3
Pattarcahata	S13	29	7.2	600	3
Mundeli	S14	27	7.6	900	2
Pari	S15	26	7.5	700	2
Khatima city	S16	30	7.8	1000	3
Nanakmatta	<i>S17</i>	31	7.8	1200	3
Sitarganj	<i>S18</i>	32	7.9	1000	4
Jaspur	S19	31	7.6	900	5
Gadarpur	S20	31	7.5	800	3
Rudrapur	S21	30	7.6	600	3
Chidiyapur	S22	25	6.9	500	8
Laksar	S23	30	7.8	700	3
Jwalapur	S24	29	7.7	600	6
Raiwala	S25	26	7.8	300	4
Chiddarwala	S26	25	6.9	200	7
Asafpur	S27	31	7.6	800	3
Landsowne	S28	23	7.5	400	7

Dogadda	S29	22	7.7	300	5
Kotdwar	S30	26	7.1	600	7
University	S31	30	6.8	500	7
Kargaina	\$32	29	7.2	900	2
Subhash Nagar	S33	32	7.3	1000	3
C.B. Ganj	S34	28	7.5	700	8

Table 2 : Habitat Diversity, frequency, density of Mushroom from Foothill region of Uttarakhand and Bareilly

SITE	STRAIN	IDENTIFIED SPECIES	HABITAT DIVERSITY	FREQUENCY ±0.04	DENSITY ±0.33
S1	M1	Mycena polygramma	Grassland	8.82	1.00
	M2	Pycnoporus sanguineus	Leaf litter	8.82	0.56
	M3	Coprinus plicatilis	Leaf litter	5.88	0.76
	M4	Hygrocybe pratensis	Base of Stem	5.88	0.56
	M5	Dacrymyces palmatus	Base of Stem	2.94	0.26
	M6	Chlorophyllum molybdites	Leaf litter	11.76	0.56
	M7	Trametes versicolor	Dead woodlog	5.88	0.44
	M8	Stereum rugosum	Leaf litter	14.71	0.38
	M9	Daedalea quercina	Deadwoodlog	5.88	0.44
	M10	Crepidotus variabilis	Base of Stem	14.71	1.21
S2	M11	Pleurocybella porrnigens	Base of Stem	5.88	0.59
	M12	Laccaria laccata	Base of Stem	11.76	0.62
	M13	Coltricia perennis	Grassland	5.88	0.41
	M14	Mycena polygramma	Grassland	8.82	1.00
S3	M15	Volvopleutus gloiocephalus	Base of Stem	5.88	0.50
	M16	Hygrocybe pratensis	Base of Stem	5.88	0.56
	M17	Auricularia auricula judae	Dead woodlog	8.82	0.26
	M18	Chlorociboria aeruginascens	Leaf litter	2.94	0.79
	M19	Pleurotus ostreatus	Leaf litter	5.88	0.59
	M20	Pycnoporus cinnabarinus	Leaf litter	2.94	0.65
	M21	Marasmius alliaceus	Base of Stem	5.88	0.29
S4	M22	Pycnoporus sanguineus	Dead woodlog	8.82	0.50
	M23	Coprinopsis atramentaria	Leaf litter	2.94	0.56
	M24	Coltricia perennis	Grassland	5.88	0.62
	M25	Volvopleutus gloiocephalus	Base of Stem	5.88	0.26
	M26	Ganoderma curtissi	Wood log	2.94	0.50
S5	M27	Macrolepiota procera	Grassland	8.82	0.21
	M28	Lycoperdon pyriforme	Grassland	5.88	0.56
	M29	Hexagonia spp.	Leaf litter	2.94	0.21
	M30	Pleurocybella porrnigens	Base of Stem	5.88	0.26
	M31	Tricholoma sulphurium	Grassland	5.88	0.65
S6	M32	Coprinus domesticus	Leaf litter	5.88	0.59
	M33	Stereum rugosum	dead woodlog	14.71	0.53
	M34	Leptoporus adustus	Deadwoodlog	2.94	0.21
	M35	Coprinus plicatilis	Leaf litter	5.88	0.35
	M36	Ganoderma adspersum	Wood log	2.94	0.76
	M37	Climacodon septentrionalis	Base of stem	2.94	0.15
S7	M38	Calvatia craniiformis	Leaf litter	5.88	0.21
	M39	Laccaria bicolor	Leaf litter	5.88	0.26
	M40	Cantharellus minor	Grassland	5.88	0.79

	M41	Laccaria laccata	Grassland	11.76	0.62
	M42	Daedalea quercina	Woodlog	5.88	0.65
	M43	Trametes versicolor	Dead woodlog	5.88	0.35
	M44	Mycena marginata	Dead woodlog	8.82	0.38
	M45	Crepidotus variabilis	Base of stem	14.71	0.85
	M46	Schizophyllum commune	Living tree base	14.71	1.50
	M47	Mycena polygramma	Base of stem	8.82	1.76
S8	M48	Lycoperdon pyriforme	Grassland	5.88	1.00
	M49	Chlorophyllum molybdites	Leaf litter	11.76	0.21
	M50	Crepidotus variabilis	Grassland	14.71	0.56
	M51	Xylaria polymorpha	Woodlog	2.94	1.04
S9	M52	Meripilus giganteus	Leaf litter	2.94	0.26
	M53	Cantharellus minor	Base of stem	5.88	0.62
	M54	Schizophyllum commune	Saprophtic	14.71	1.85
	M55	Ganoderma applantum	Base of stem	14.71	1.76
	M56	Crepidotus variabilis	Leaf litter	14.71	0.62
	M57	Laccaria bicolor	Leaf litter	5.88	1.50
	M58	Pleurotus ostreatus	Woodlog	5.88	0.79
	M59	Trametes gibbosa	Woodlog	2.94	0.59
	M60	Polyporus alveolaris	Base of stem	2.94	0.24
	M61	Coprinus comatus	Dead woodlog	2.94	0.26
	M62	Tricholoma sulphurium	Grassland	5.88	0.74
S10	M63	Amanita virosa	Woodlog	2.94	0.59
	M64	Schizophyllum commune	Tree trunk	14.71	0.50
	M65	Lentinus tigrinus	Woodlog	2.94	1.36
	M66	Psathyrella conopilus	Grassland	2.94	0.56
	M67	Collybia dryophila	Dead wood	2.94	0.41
	M68	Lactarius deliciosus	Living treebase	5.88	0.68
S11	M69	Entoloma conferendum	Mycorrhizal	2.94	0.62
	M70	Schizophyllum commune	Mycorrhizal	14.71	1.85
	M71	Clitocybe gibba	Grassland	5.88	1.46
S12	M72	Mycena marginata	Leaf litter	8.82	1.00
	M73	Hygrocybe calyptiformis	Grassland	2.94	0.59
	M74	Agaricus sylvaticus	Leaf litter	2.94	0.50
S13	M75	Cantharellus cibarius	Debris	11.76	0.38
	M76	Cliptopilus prunulus	Debris	2.94	1.03
S14	M77	Auricularia auricula judae	Deadwood log	8.82	0.38
	M78	Cantherellus cibarius	Grassland	2.94	0.79
S15	M79	Condrostereum pupureum	Leaf litter	2.94	0.47
	M80	Sparassis crispa	Woodlog	8.82	0.26
S16	M81	Tyromyces chioneus	Deadwood log	2.94	0.74
	M82	Auricularia mesenrtica	Living tree trunk	5.88	0.50
	M83	Polyporus brumalis	Deadwood log	2.94	0.62
	M84	Cortinarius spp.	Debris	2.94	0.18
	M85	Xylaria hypoxylon	Deadwood log	8.82	0.35
S17	M86	Coriolus versicolor	Living Tree trunk	5.88	0.76
	M87	Cantherallus subalbidus	Leaf litter	2.94	0.24
	M88	Daedaleopsis confragosa	Living tree trunk	5.88	0.53
	M89	Gymnophus dryophilus	Deadwood log	2.94	0.47

	M90	Trametes hirsuta	Deadwood log	2.94	0.56
S18	M91	Ganoderma applantum	Living tree trunk	14.71	0.50
	M92	Ganoderma resinaceum	Deadwood log	8.82	0.62
	M93	Macrolepiota procera	Grassland	8.82	0.68
	M94	Auricularia auricula judae	Deadwood log	8.82	0.56
	M95	Gleophyllum odoratum	Deadwood log	2.94	0.79
	M96	Ganoderma applantum	Living tree trunk	14.71	0.38
S19	M97	Pseudohydnum gelatinosum	Deadwood log	2.94	0.62
	M98	Mycena marginata	Debris	8.82	0.85
S20	M99	Disciotis venosa	Deadwood log	2.94	0.38
	M100	Podoscypha petalodes	Deadwood log	2.94	0.24
S21	M101	Hymenochaete rubiginosa	Deadwood log	2.94	0.62
S22	M102	Lenzites betulina	Deadwood log	2.94	0.21
	M103	Phlebia tremellosa	Livilg tree trunk	2.94	0.26
	M104	Polyporus umbellatus	Leaflitter	2.94	0.15
	M105	Stereum rugosum	Deadwood log	14.71	0.06
	M106	Xylaria hypoxylon	Leaflitter	8.82	0.06
	M107	Ganoderma resinaceum	Deadwood log	8.82	0.47
S23	M108	Cymatoderma spp.	Living tree trunk	2.94	0.38
	M109	Heterobasidium annosum	Deadwood log	2.94	0.47
S24	M110	Crepidotus porringens	Living tree trunk	5.88	0.29
	M111	Gloeophyllum sepiarium	Deadwood log	5.88	0.88
	M112	Cantharellus cibarius	Leaflitter	11.76	0.53
S25	M113	Sparassis crispa	Deadwood log	8.82	1.03
	M114	Clitocybe nuda	Grassland	2.94	0.74
	M115	Polyporus squamosus	Deadwood log	2.94	0.53
	M116	Hygrophoris aurantiaca	Grassland	2.94	0.38
	M117	Ramaria stricta	Leaflitter	2.94	0.53
	M118	Phellinus spp.	Living tree trunk	2.94	0.76
	M119	Lactarius deliciosus	Living tree trunk	5.88	0.35
	M120	Fomes fomantarius	Woodlog	2.94	0.62
S26	M121	Crepidotus porringens	Living tree trunk	5.88	0.24
	M122	Clitocybe gibba	Grassland	5.88	0.88
	M123	Mycena pelianthena	Leaflitter	2.94	1.00
	M124	Lenzites tigrinus	Leaflitter	2.94	0.59
	M125	Thelophora terrstris	Leaflitter	2.94	0.44
	M126	Flemmulinas velutipes	Leaflitter	2.94	0.24
	M127	Lactarius trivialis	Grassland	2.94	0.79
	M128	Pleurotus sajor caju	Living tree trunk	2.94	0.56
	M129	Ganoderma applantum	Deadwood log	14.71	0.76
	M130	Trichaptum abietum	Leaflitter	2.94	0.65
S27	M131	Clitopilus prunulus	Deadwood log	2.94	0.62
	M132	Pycnoporus sanguineus	Deadwood log	8.82	0.44
S28	M133	Daedaleopsis confragosa	Deadwood log	5.88	0.56
	M134	Gloeophyllum sepiarium	Living tree trunk	5.88	0.47
	M135	Laetiporus sulphurius	Living tree trunk	2.94	0.53
	M136	Scleroderma verucosum	Grassland	2.94	0.38
	M137	Bondarzawia berkeleyi	Dead woodlog	2.94	0.29
	M138	Tyromyces stipticus	Dead woodlog	2.94	0.44

	M139	Schizophyllum commune	Dead woodlog	14.71	0.53
S29	M140	Cantharellus cibarius	Grassland	11.76	1.03
	M141	Crelophus cirrhatus	Living tree trunk	2.94	1.06
	M142	Phellodon tomentosus	Grassland	2.94	0.47
S30	M143	Sparassis crispa	Dead woodlog	8.82	0.38
	M144	Auricularia mesenrtica	Dead woodlog	5.88	0.74
	M145	Bovista plumbae	Grassland	2.94	0.41
	M146	Tremella mesentrica	Dead woodlog	2.94	0.29
S31	M147	Chlorophyllum molybdites	Leaf litter	11.76	0.62
	M148	Laccaria laccata	Leaf litter	11.76	0.74
	M149	Irpex lacteus	Deadwood log	5.88	0.44
	M150	Calvatia utriformes	Grassland	2.94	0.35
	M151	Crepidotus variabilis	Living tree trunk	14.71	0.29
	M152	Cantharellus cibarius	Grassland	11.76	0.76
	M153	Marasmius sullivanti	Grassland	2.94	0.35
	M154	Ganoderma resinaceum	Deadwood log	8.82	0.62
	M155	Agaricus bisporus	Ground	2.94	0.76
S32	M156	Ganoderma applantum	Living tree trunk	14.71	0.56
	M157	Chlorophyllum molybdites	Leaf litter	11.76	0.44
	M158	Laccaria laccata	Grassland	11.76	0.62
	M159	Stereum rugosum	Deadwood log	14.71	0.38
S33	M160	Macrolepiota procera	Grassland	8.82	0.56
	M161	Trametes versicolor	Living Tree trunk	5.88	0.35
	M162	Xylaria hypoxylon	Deadwood log	8.82	0.29
S34	M163	Coprinus domesticus	Leaf litter	5.88	0.44
	M164	Calvatia craniiformis	Grassland	5.88	0.50
	M165	Marasmius alliaceus	Base of Stem	5.88	0.62
	M166	Stereum rugosum	Deadwood log	10.71	0.47

Results shown for frequency and density are \pm SD values

Fig. 2: % Share of Different Mushroom Orders from Studied region

Fig. 3 : Some Photographs of the collected wild mushroom from area under study *Scientific names given in Table2.

CONCLUSION

This study was aimed to collect and identify wild mushroom that grow naturally in different habitats in Foothill region of Uttarakhand. High diversified mushroom were collected from the foothill where members of Agaricales and Polyporales were maximum indicating that this ecological site contains the high content of organic matter and these two orders has been reported to pay into the recycling of lingocellulosic and hemi-cellulosic organic matter of forest region (Valaskova and Baldrian, 2006); Kumla et al., 2020). Moreover the high rainfall from mid June to July contributes a favorable environment for their growth and activity. During the study it has also being found that majority of the poor population depends on their food on these wild mushroom. The rich diversity of mushroom in Foothill region and Bareilly, offers huge socio-economic potentials. Such a diversified nutrient rich food and further we have to explore new good sources of antioxidants and pharmaceutical compounds from these wild mushroom. However, they need to be properly documented for optimum application. Hence, this study is an important first step towards producing a checklist of mushrooms of Foothill region of Uttarakhand and Bareilly

Acknowledgements

The authors are thankful to the local people, forest guards and tribes of Uttarakhand assisting in providing information to the authors; allowing the first author to take photographs in the field and to collect wild mushrooms.

CONFLICTS OF INTEREST

The author(s) declare that they have no competing interests.

REFERENCES

- Atkinson, G.F. (1961). Studies of American Fungi-Mushrooms, Edible, Poisonous, etc.II Edition. Hafner Publishing Company, New York.
- Bates, S.C. (2006). A preliminary checklist of Arizona macrofungi. *Canotia* 2: 47-78.
- Barros, L. *et al.* (2007). Total phenols, ascorbic acid, β carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. *Food Chemistry.* 103: 413-419.
- Christensen, C.M. (1981). Edible Mushrooms, II Edition, Revised. ISBN 0-8166-1049-5. University of Minnesota Press, Minneapolis, MN 55414.pp:118

- Chandrawati *et al.* (2014). American International Journal of Research in Formal, *Applied & Natural Sciences*, 5(1): 71-75.
- Curtis, J.T. and McIntosh, R.P. (1950). The Interrelation of Certain Analytic and Synthetic Phytosociological Characters. *Ecology*, 31: 434-455.
- Kumla J. et al. (2020). Cultivation of Mushroom and their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. *Molecules*, 25(12): 2811.
- Laessoe, T. (2000). Mushrooms. Dorling Kindersley Limited London. ISBN 9781405357920
- Lamaison, J.L. and Polese, J.M. (2005). The Great Encyclopedia of Mushrooms. Konemann Tandem Verlagh Gmbh.
- Natrajan, K.C. *et al.* (2005). Biodiversity of Agarics from Nilgiri Biosphere Reserve, Western Ghats, India. *Current Science*. 12: 1890-1892.
- Okoro, I.O. *et al.* (2012). Proximate and mineral analysis of some wild edible mushroom. *African Journal of Biotechnology*. 11(30): 7720-7724.
- Stametes, P. (2000). The Role of Mushroom in Nature, culturing Mushroom Mycelium on Agar Media. In: Growing Gourmet and medicinal mushrooms. Ten Speed Press, Hong Kong.
- Swapna, S.; Syed, A. and Krishnappa, M. (2008). Diversity of macrofungi in Semi-Evergreen and Moist Deciduous forest of Shimoga District – Karnataka, India. *Indian Journal of Mycology and Plant Pathology*, 38(1): 21-26.
- Sarma, T.C.; Sarma, I. and Patiri, B.N. (2010). Wild edible mushrooms used by some ethnic tribes of western Assam. *The Bioscan* Special Issue 3: 613-625.
- Sharma, V. and Jaitly, A.K. (2017). Optimization of Growth of Two Wild Species of *Pycnoporus* Collected from Foothill of Uttarakhand. *International Journal of Agriculture Innovations and Research*. 6(1): 91-94.
- Tapwal, A.; Kumar, R. and Pandey, S. (2013). Diversity and frequency of macrofungi associated with wet evergreen tropical forest in Assam, India. *Biodivrsitas*. 14(2): 73-78.
- Thatoi, H. and Singdevsachan, S.K. (2014). Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review. 13(4): 523-545.
- Valaskova, V. and Baldrian, P. (2006). Degradation of cellulose and Hemicellulose by the brown rot fungus *Piptoporus betulinus*. Production of extracellular enzymes and characterization of the major cellulases. *Microbiology* (Reading). 3613-3662.