

AGROMORPHOLOGICAL CHARACTERS OF AROMATIC RICE GERMPLASM

Sathish Kumar P.^α, Sanjeeva Rao D.^α, Praveen Kumar R.^α, M.S.R.S.C. Sekhar^α, L.V. Subba Rao^α, A. Krishna Satya^β, P. Sudhakar^β and M.S. Madhav^α*

*Corresponding Author: Dr. MS Madhav

^{*a*} ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, India

^β Department of Biotechnology, Acharya Nagarjuna University, Andhra Pradesh, India

Abstract

Rice feeds more than half of the global population inhabiting the earth. Since time immemorial, human beings are consuming rice as one of the staple food and it lead to the propagation and maintenance of huge germplasm in thousands based on their preferred grain quality. Of these, aromatic rice is unique for its pleasant aroma, is popular among rice consumers and provides attractive economic benefit to farmers. Crop improvement programmes have been conducting dedicated efforts to further improve the aroma and yield. Hence, this study aimed to record the DUS characters of aromatic rice germplasm, 552 accessions. The germplasm was cultivated under the same conditions at the research farm of ICAR-IIRR, Hyderabad, during wet season 2013. Wide diversity was observed among the germplasm for most of the DUS characters.

Keywords: Aromatic rice, Germplasm, Crop improvement, DUS characters.

Introduction

Rice is a traditional staple food in many countries of the world, importantly in Asian countries, therefore rice consumption is determined by the population needs in food. Rice (Oryza sativa L.) is a monocot grass species and belongs to Gramene family and Oryza genus which originated at least 130 million years ago (Khush, 1997). Domestication of rice simultaneously (probably) observed in north east part of India and southern region of china about 800 years ago (Sang and Ge, 2007). The genus oryza includes two cultivated species, Oryza glaberrima (African rice) and Oryza sativa (Asian rice) along with 21 wild species (Londo et al., 2006). It has several important syntenic relationships with other cereal crops and is a model plant for cereals (Shimamoto and Kvojuka, 2002). Rice has a diploid genome. It is the first completely sequenced cereal crop with an accurate genome sequence of 389 Mb size (IRGSP, 2005).

Aroma is considered as one of the top grain quality traits in rice and is a key reason in determining market price as well as related to regional and international identity (Fitgerald, 2009 and Bhattacharjee 2002). The Indian subcontinent has the 'natural gift' of Basmati rice that has been accepted as the best scented, long slender grain in the world market and fetches high price. In addition, silent majority of the indigenous aromatic rice cultivars are small and medium grained (Singh et al. 2000a). The tarai region of Himalayan belt of Bihar and Uttar Pradesh of India are the probable places of origin for aromatic rice. Approximately, India has over 70,000 accessions of rice germplasm with a significant number of wild forms still to be collected and conserved (Siddiq, 1992). As a part of civilization, thousands of indigenous adapted aromatic rice genotypes have evolved as a result of human and natural selection. These landraces are the genetic pool of useful alleles. Traditional varieties have been replaced by modern and high yielding varieties reportedly in the irrigated rice ecosystem resulting to reduced genetic base and thus increased genetic vulnerability. In past few decades, growth in share of high yielding varieties and depletion in the area of local varieties have been reported in India (Hore 2005; Patil and Patil 1994; Rana et al. 2009) as well as in several other countries (Bhatti 1998; Chaudhary et al. 2006; Itani 1993; Juma 1989).

Aromatic rice accessions in general are tall with thin stem, contain less number of panicles, high stem weight, lower yields and susceptible in lodging due to more plant height. Glaszmann (1987) revealed that aromatic rice accessions fall into a separate group from that of the typical indicas and stated that these two groups are incompatible causing inter-group hybrid sterility. More than 100 volatile compounds have been reported in aromatic rice varieties, but the main compound responsible for the characteristic aroma is 2-Acetyl-1-pyrroline (2AP) (Paule, 1989 and Buttery 1982). Accumulation of 2AP is occurs due to the presence of a non-functional Betaine aldehyde dehydrogenase 2 (BADH2) gene (Bradbury et al., 2005, 2008). The nonfunctional BADH2 interferes in pollen tube development and this could be the reason for the less yield in aromatic varieties (Bradbury et al., 2008).

Based on this background, for improvement of aromatic rice germplasm of India and for gaining insights about aroma, 552 indigenous and exotic aromatic rice germplasm was collected and in the present study, their Distinctiveness, Uniformity and Stability test (DUS) characters were taken for evaluation.

Materials and Method

Collection of aromatic rice germplasm and multiplication

For this study, 552 aromatic accessions (Table 1) were collected from different parts of India Viz., ANGRAU Rajendranagar, TNAU Tamilnadu, IARI New Delhi, PAU Ludhiana, SVBUUAT Nagina, GBPUAT Pantnagar, IGKV Raipur, AAU Nawagam. The collection includes both Basmati and non- Basmati aromatic accessions. Which contain various short, long grain aromatic traditional land races, semi-dwarf high yielding varieties and elite lines of indigenous and exotic accessions. The germplasm grown at IIRR during kharif season 2013 and purified them by removing the mixtures and off types. Each accession was sown in three rows of 2m length at spacing of 20 cm between

rows and 15 cm between plants. Crop was raised following recommended package of practices.

Data recording and analysis

DUS characters were taken based on the guidelines given by PPV&FRA, 2007 (Protection of Plant Varieties and Farmer's Rights Authority, Govt. of India). All the observations were recorded on five random representative plants and quality analysis was done at grain quality lab IIRR, Hyderabad following standard protocols (DRR, 2013).

The 40DUS characters are, 1) Basal leaf sheath colour 2) Leaf pubescence of Blade surface 3) Leaf auricles 4) Leaf anthocyanin colouration of auricles 5) Ligule shape 6) Ligule colour 7) Days to 50% flowering 8) Flag leaf attitude of blade early obs 9) Spikelet density of pubescence of lemma 10) Lemma anthocyanin colouration of area below apex 11) Spikelet color of stigma12) Stem length 13) Stem anthocyanin colouration of nodes 14) Panicle Length 15) Flag leaf attitude of blade late obs 16) Panicle curvature of main axis 17) Spikelet colour of tip of lemma 18) Panicle awns 19) Panicle color of awns late obs 20) Panicle distribution of awns 21) Panicle attitude of branches 22) Panicle exertion 23) Sterile lemma colour 24) Decorticated grain length 25) Decorticated grain width 26) Decorticated grain shape 27) Decorticated grain color 28) Endosperm presence of amylose 29) Decorticated grain aroma 30) Vegetaive vigour 31) Tillering ability 32) Productive tillers/Plant 33) Plant Height 34) Panicle threshability 35) Phenotypic acceptability 36) Spikelet number/plant 37) Fertile Grains/ Plant 38) Sterile grains /Plant 39) Plot Yield in gms 40) 100 Grain weight.

Results and Discussion

The 556 aromatic rice germplasm was subjected to qualitative and quantitative DUS characters. Except for ligule shape all the characters showed wide diversity in this germplasm. Basal leaf sheath colour was green in majority of the accessions while few lines contain purple lines, light purple or purple colour (Table 2). Auricles were observed in most of the accessions and they were mostly colourless. Leaf ligule was in split shape in all the accessions and it was white in colour followed by light purple and purple. Flag leaf was erect in more than half of the aromatic accessions followed by semi-erect and horizontal. While semi-erect type of blade of the flag leaf was higher followed by horizontal and erect (Figure 1). In the case of panicle, heading time ranged from early to very late, main axis length was long followed by medium and very long and most of them have erect to semierect. Awns were seen in 188 accessions and were spread whole length followed by tip and upper half. Most of the awns were in black colour (Table 3). Panicle was well excerted in more than half of the accessions and was enclosed in two of the 556 accessions.

In spikelet (Table 4), pubescence of lemma was weak to strong in majority of the accessions, lemma colour was absent in 90 accessions, tip of lemma was in yellowish or brown in colour in more than half of the accessions and white colour stigma was dominant over other colours. Spikelet number, fertile grain number and sterile grain number in the panicle ranged from 63 to 258, 40 to 212 and 12 to 212 respectively. Five whole plant observations i.e., Vegetaive vigour, Tillering ability, Plant Height, Panicle threshability and Phenotypic acceptability were shown in Table 5. For the germplasm, Productive tillers/Plant ranged from 2 to 40, Spikelet number/plant ranged from 63 to 258, Fertile Grains/ Plant ranged from 40 to 212, Sterile grains /Plant ranged from 12 to 121, Plot Yield in gms. ranged 4 to 439 gms. and 1000 Grain weight ranged from 22.97 to 84.75 mg. Whereas quality characters ranges were Decorticated grain length, width and shape ranges from 1 to 7. Endosperm presence of amylose and Decorticated grain aroma ranged from 1 to 9 and another quality character Decorticated grain color ranges 1-5 according to PPV and FRA guidelines on rice.

Varieties differ in blade length, width, area, shape, color, angle, and pubescence. Auricles are small, paired, earlike appendages borne on either side of the base of the blade. Culm is the jointed stem with nodes and internodes. Distinctness, Uniformity and Stability, or "DUS test" is the major component of the examination of new/existing varieties of plants. However, as the gene expression is influenced by environment, distinctness can change with the environment (Liu et al., 2012). In addition, the distinctness is also narrow or very less between the existing and newly developed varieties due to the repeated usage of few parent lines whose characters are widely accepted by the consumers. Considering the wide popularity and acreage of the mega varieties, random mutation strategy, treatment with chemical mutagens like EMS, was employed to identify the lines with better properties like resistance to one or more diseases, further enhancement in yield, plant-type, etc., without affecting the other accepted characteristics of the variety

Table 1: List of germplasm evaluated for DUS characters.

S. No	Accession Name	S. No	Accession Name	S. No	Accession Name	S. No	Accession Name
1	BANSPATRI -1	277	CHATIANAKI	139	KAPOOSAR	415	BASMATI 6131
2	GANGABARU	278	DHANA PRASAD-3	140	BANSPATRI-2	416	BASMATI 802
3	KALIMUCHH	279	GANGA BALLI	141	CHINIKAPOOR	417	BASMATI 6141 -2
4	MOONGPHALI B	280	HEERAKANI-2	142	BAGMUCHH	418	BASMATI 381
5	DINDLI	281	JAIPULLA	143	KALIKAMOD	419	BAS SUFAID 187
6	DHURIAWA	282	KH SAKANI	144	CHHATRI	420	BAS SURKH 112
7	MODAK B	283	KARPURA BASA	145	ATMASHITAL	421	BASMATI 11
8	KANKJEER A	284	LEELA BATI	146	SHAMJIRA	422	BASMATI 127A
9	DHANIA - B2	285	TULSI PHOOLA	147	JIRADHAN	423	BASMATI 138
10	RAU 3061	286	SARAGA DHULLI	148	DHAWARA SAWA	424	BASMATI 93 -2
11	RAU 3055	287	MUIGAI	149	CHINOOR	425	HBC 46
12	RAU 3036	288	AYEPYAUNG	150	SUKALAPHOL	426	BASMATI -3
13	RAU 3048	289	BINIRHEN	151	ELAYACHI	427	VALLABH BASMATI 22
14	RAU 3041 -1	290	BONGCAY-1	152	GANGA BARU	428	VALLABH BASMATI 24

15	RAU 3043	291	BONGCAY -2	153	JAI GUNDI	429	HARYANA BASMATI -1
16	RAU 3044	-	C-4-63-G -1	154	SHYAM JIRA	430	PANT SUGANDH DHAN
	MAGURAPHULLA		C-4-63-G -2	-			- 15 UPRI 93-101
17 18	NANU -1	293 294	C-4-03-0-2 D-66	155 156	ANTERVED TULSI PRASAD	431 432	KHAZIA DHAN
19	DEULABHOG	-	DAW LEUANG	150	KUBRIMOHAR	433	LAL BASMATI
20	TULASIPHULLA	296	DU THOM THAI BINH HAI	157	BHAINSA PUNCHHI		BASMATI 386 -1
			PHONG			-	
21	GANJEIKALLI-1	297	GUINATA HUNG-MI-HSIANG-MA-	159	LOKTIMACHI(Muchhi)	435	SEOND BASMATI
22	DHOIABANKOI	298	TSAN -1	160	KERAGUL	436	SANWAL BASMATI
23	NALIDHAN	299	HUNG-MI-HSIANG-MA- TSAN -2	161	SAMUDRATAN	437	PUSA BASMATI 1121 -1
24	BARIKUNJA	300	HAWM LAO	162	FUNDRI	438	RAJENDRA BASMATI
25	JALA	301	HAWN JAN	163	JAYPHOOL	439	IMPROVED PUSA BASMATI
26	BHATAGUNDI	302	KHAOJAO HAWM	164	LALSUMBHOG	440	PUSA 44
27	SEETAKESHARI	303	KHAO MALI	165	NAWAB BHOG	441	PUSA 834
28	BANSADHAN	304	KALIMOOCH	166	JAYASHANKAR	442	PUSA BASMATI -1
29	BASUABHAVA	305	LUA NHE	167	SHRIKAMAL	443	INDIRA SUGANDH DHAN
30	ATHMA SHITAL-1	306	LUA NHE DEN	168	MAHARAJI	444	PUSA 677
31	PARIJATAK	307	LONGKU LABAT	169	TILKASTURI	445	PUSA BASMATI - 6
32	MAHULAKUCHI	308	MILFOR 6	170	VISHNU BHOG	446	
33	THAKURA BHOG	309	MAJOR DJAMBON	171	DUBRAJ-1	447	IET 21959 (PUSA 1509- 03-1-7-2)
34	KARPURA KALLI	310	NIAW PING	172	SHITAL BHOG	448	IET 21960 (1509-03-3-9-5)
35	SEETABHOG	311	NEPALI JOHA	173	SAMUNDCHINI	449	IET 21953 (UPR 3506-7-1-
		-				-	1)
36 37	JUHIBENGAL -A	312	NIIAW HAWM	174 175	TEDESI		IET 22289 (1592-06-05-2)
38	SONACHOOR GANGA BARUD		PADI BAWANG POPOT	175	MAIDUBRAJ BANTHA PHOOL-3	451 452	1601-105-1-46-1-1 IET 22290 (1612-07-6-5)
		-			RNR -2465 (SUGANDA		
39	ATHMA SHITAL-2	315	XIANG GENG LI	177	SAMBA)	453	· · · · · ·
40	AMRIT BHOG-1	316	CALROSE 76	178	SUMATI	454	IET 22778(1596-121-148- 24-11)
41	JIRAPHOOL	317	DELLA	179	CHITTI MUTYALU(SMALL GRAIN)	455	P 1568 -05-6-4-154
42	RAU 3056-1	318	DULHA BHOG	180	CHITTI MUTYALU(BOLD GRAIN)	456	P 1568 -05-6-4-153
43	KANKJEER	319	HBC 30	181	GODAVARI ISUKALU	457	RNR-2354
44	RAU 3073	320	MIL GROSA	182	KRISHNA KAMOD-1	458	BASMATI 386 -2
45	RAU 3076	321	IET 12017	183	PANKHALI - 203	459	TYPE 3
46	KB-13	322	MALAGKIT SUNG SONG	184	GR-101	460	KASTURI -1
47	RAU 3079	323	KALIA	185	GR-102	461	HARYANA BASMATI -2
48	RAU - 3043	324	VALLABH BASMATI 21	186	GR- 104	462	PUNJAB BASMATI
49	RAU 3056-2	325	CSR - 30	187	GAR - 1	463	MAHI SUNGANDHA
50	AMBEMOHAR -157	326	PUSA SUGANDH -2	188	GR -6	464	PUSA BASMATI -2
51	KANIKABHOG	327	PANT SUGANDH DHAN - 17	189	NWGR -3042	465	
52	HEERAKANI-1	328	PANT SUGANDH DHAN - 21	190	NWGR -3045	466	MUGADSUGANDH
53	BASNA PARIJAT	329	TAPOVAN BASMATI	191	NARMADA	467	YAMINI (BASMATI CSR 30)
54	JALAKA	330	BASMATI 385 -1	192	LECTIMACHI	468	VASUMATI
55	KALAJUVAN	331	BASMATI 370 -1	193	Sheetal kani	469	SUGANDHA MATI -1
56	LECTIMANCHI -A	332	PUNJAB BASMATI - 2	194	R-1498-778-388-1-1	470	HBC- 45
57	PIMPUDIBASA	333	SUPER BASMATI	195	BADSHAHA		HBC- 85 -1
58	KARPURA KRANTI	334	RYT 3267	196	KANAK JEERA	472	HBC -47
59	CHHABISWA	335	RYT 3275	197	DHANIYA-2	473	IMPROVED PUSA BASMATI-1
60	KHEERSAI	336	PUNJAB MEHEK - 1	198	RAU 3041-2	474	HBC 34
61	IGSR -3-1-5	337	RANBIR BASMATI -1	199	SHABANMASI	475	HBC- 85 -2
62	IGSR 2-1-6	338	BASMATI 564	200	BISHNU BHOGA-1	476	HBC 98
63	NDR IRRI 67	339	CHIMBALATE BASMATI	201	TATUN BHOG	477	IET 12014
64	GANJEKALLI	340	BASMATI 370 -2	202	Kalajeera	478	HKR 240 IET 12021
65	NEELABATI-1	341	BASMATI 217	203	IGSR-2-1-46-2	479	HARYANA GAURAV
66	HANKESH	342	RANBIR BASMATI -2	204	RB 2816	480	IET 12601
67	BASMATI -1	343	TARAORI BASMATI	205	GANJEIKALLI-2	481	PUSA 169
	KALANAMAK-1	344	BASMATI 136	206	KANAK JEER-3	482	DUDHSAR

69	AS GPC - 12	345	BASMATI 93 -1	207	AMRIT BHOG-2	483	KUSUMA
70	AS GPC - 14	346	BASMATI BAHAR	208	NEELABATI-2	484	MUGAD SUGANDHA
71	AS GPC - 19	347	BASMATI 106 -12 -1	209	BADSHAH BHOG-2	485	SUGANDHA MATI -2
72	AS GPC -38	348	BASMATI 6129 -1	210	NANU-2	486	KASTURI -2
73 1	BAYASA BHOG	349	BASMATI 6129 -2	211	CHITTI MUTYALU	487	UPRI 93-63-2
74 1	DHUBA MUA	350	BASMATI SUFAID 106	212	DUBRAJ-2	488	UPR 3375-8-1-1
75 1	DUDAGA	351	BAS KAMON	213	RANDHUNI PAGAL-1	489	UPR 2886-10-1-2
76 1	DUDH NAG	352	BASMATI 397	214	TULASI KANTHI	490	UPR 3565-10-1-1
77 (GANJO		BAS SURKH 89-15	215	TULASI GHANTI	491	UPR 2828-7-2-1
	RAJINI 2	354	KHAD JOO HAWN	216	JGL 11609	492	UPR 3519-18-1-1
	TULSI BHOG	355	BASMATI SUFAID 100	217	NDR 8022	493	
	RAJA BHOG		BASMATI 213 -1	217	R-1498-747-358-2-1		UPR 3429-2-1-1
	TENDU PHOOL		BASMATI 242	218	PDKB SHRIRAM		1
-				-			RP 36444-1-9-5-5
-	SONTH		BASMATI 124-10	220	KHASAKANI		IET 13548
	R-1462-243-100-7-1-1		BASMATI SATHI	221	RRB 2005-1		IET 14131
-	IGSR-2-1-46-1		BASMATI 334	222	HUR -ASG-MJ 72505		
	ADAM CHINI B	361	BASMATI KOTA	223	R 1432-261-105-2-1-2	499	IET 15831
86 1	KANAK JEER-1	362	BASMATI 443	224	NDR 8399-2	500	IET 15832
87 1	DHANIYA-1	363	BASMATI MEHTRAH	225	DHANA PRASAD-1	501	IET 15833
88 1	LOUNG CHOOSI A	364	BASMATI -427	226	NDR 8497-2	502	IET 15834
89 I	LOUNG CHOOSI B	365	BASMATI JAMUNA	227	PTB 13	503	IET 15835
90 1	KANAK JEER-2	366	BASMATI 122	228	ACHARAMATI-1	504	IET 16325
91 I	BANTHA PHOOL-1	367	BASMATI 5888	229	AKITIKARI	505	IET 17025
92 1	BANTHA PHOOL-2	368	GEETANJALI	230	JEERA KASALA	506	IET 16327
93	CHAMPARAN BASMATI 1	369	PUSA SUGANDH -2	231	RD 1205	507	IET 17278
94 (CHAMPARAN BASMATI 2	370	PUSA SUGANDH -5	232	MUSKAN	508	IET 17281
	CHAMPARAN BASMATI 3	371	PAKISTAN BASMATI	233	MAYUR KRANTI		
	CHAMPARAN BASMATI 4	372	R 1475-468-564-2-1	233	TULSI MANJARI-2		IET 18990
	BOGA JOHA		KARNAL LOCAL	235	KHASKANI		IET 22787
	BORA DHAN 1		BASMATI KAMON		MOHAN BHOG		IET 22787
				236		-	
	DUBRAJ (RAIPUR)		PUSA SUGANDH -3	237	RANDHUNI PAGAL-2		IET 21665
	GOVIND BHOG-1		PUSA BASMATI 6	238	DANAGURI	-	BAS 837
-	KAMOD		BASMATI RAVI	239	KALAMUNIYA		BASMATI NEPAL
	KAMOD 119		BASMATI 37	240	BADSHA BHOG		KDML 105
	KON JOHA 1	379	BASMATI TALL	241	BR-34		DOMSIAH
-	KOLA JOHA 1		BASMATI NAROT 439	242	KEDA GAURI		JASMINE SCENTED
105 1	KON BOGI JOHA	381	BASMATI 134	243	GAYASU	519	HAWM MALI
106 1	KHORIKA JOHA	382	BASMATI 372 -1	244	TULASIFUL	520	IR 841 - 85 - 1-1-2
107 1	KRISHNA JOHA	383	BASMATI TYPE 3	245	GOPAL BHOG	521	JAO MALI
108 1	KAMINI JOHA	384	BASMATI -2	246	DUDHKHASA	522	BASMATI LAMO
09 1	KOLA JOHA	385	BASMATI MAHON 381	247	KOLIJOHA	523	CHANAN
10	KALI KAMOD	386	BASMATI 410	248	KRISHNA KAMOD-2	524	JJ 92
11	MONGARA PHOOL	387	BASMATI 377	249	BEGAMI T 1	525	IR 60164 - 122- 3-2-1
12	TARUR BOGA	388	BASMATI 405	250	BEGAMI S-7	526	IR 62871 -138-5
	Kalijira 8-1	389	BASMAT 140	251	BEGAMI 2-8	527	IR 62871 - 549-3-1
	RAMBHOG B	390	BASMATI 502	252	BEGAMI -41	528	IR 62871-549-3-5
	CHINOOR B	391	BASMATI 370 -3	252	KALIMOOCH (RAIPUR)	529	IR 62871-549-3-6
	KALANAMAK(NICHI)	391	BASMATI 370 -3	253	KARPUR BHOG	530	IR 62873-224-1-6
	DHANA PRASAD-2						
		393	BASMATI 6141 -1	255	DANGAR CHUDI	531	IR 62873-227-1-16
	KALANAMAK-2	394	BASMATI MAHAN	256	RAMACH ANDRA BOITA	532	IR 62873-227-2-5
	KALANAMAK-3	395	BASMATI 1-1-A	257	RATAN CHUDI	533	IR 62873-238-2-3
	JEERAGA SAMBA	396	BASMATI 442	258	KALA BHUTIA		IR 62873-244-2-2
	GANDHA SALA	397	BASMATI 107	259	BAHURUPI		IR 62873-244-2-5
	CO ACC 167 (T 167)	398	BASMATI 208	260	NAGRA		BARAH
.23	CB 06550	399	BASMATI 213 -2	261	RANI KAJAL	537	HASAN SERAI
24	TILAK CHANDAN-1	400	BASMATI 372 -2	262	MACCHA KANTA	538	KHAO DAWK MALI
125 1	BINDLI	401	BASMATI 106 -12 -2	263	HALDI CHUDI	539	IET 12016
126 1	HANSRAJ	402	BASMATI 376	264	KOLIHA	540	UPRBS 98/69-7-2-2
	TILAK CHANDAN-2	403	Basmati 388	265	HARI SHANKAR	541	IR 74717-3-3-1-3
	BINDALI	404	BASMATI 433	266	BASTUL	542	IR 74718-1-1-3-2
	IMPROVED SARBATI	405	BASMATI T - 370	267	LAL GORI	543	IR 74719-23-3-2-2
	LALDHAN	406	BASMATI SURKH 161	268	GOVIND BHOG-3	544	IR 74720-13-1-2-2
130 1							

132	SATHI	408	BASMATI 150	270	KERALA SUNDARI	546	IR 74724-82-2-2-3
133	UPRI 1840 - 31-1-1-16	409	BASMATI 385 -2	271	PKV HMT	547	IR 74725-115-3-3-3
134	GOVIND BHOG-2	410	BASMATI 5836	272	PKV MAKARAND	548	IR 74728-134-1-1-3
135	KADAM PHOOL	411	BASMATI 385	273	RAJENDRA SWETHA	549	IR 75251-34-1-2-2
136	TULSI MANJARI-1	412	BASMATI 5853	274	ACHARAMATI-2	550	IR 75428-6-3
137	BADSHAH BHOG-1	413	BASMATI 5854	275	BISHNU BHOGA-2	551	RT 1117
138	KARIGILAS	414	BASMATI 5874	276	BASMATI BHOGA	552	RT 1121

Table 2: DUS	characteristics	of stem	and leaf
14010 - 000	onaracteristics	or scom	una rour

S. No.	DUS Characteristics	State	Observation
		Green	539
1	Basal leaf sheath colour	Purple lines	6
1	Basai leai sileatii coloui	Light purple	3
		Purple	4
		Glabrous	389
2	Pubescence of Blade Surface	Intermediate	91
		Pubescent	70
3	Auricles	Absent	6
5	Autores	Present	546
		Colourless	532
4	Auricle colour	Light purple	11
		Purple	3
		Truncate	0
5	Ligule shape	Acute	0
		Split	549
	Ligule colour	White	441
6		Light purple	103
		Purple	5
		Erect	313
7	Flog loof attituda	Semi-erect	143
/	Flag leaf attitude	Horizontal	90
		Drooping	2
		Erect	155
8	Flag leaf attitude of blade (Late Observation)	Semi-erect	207
0	Flag leaf attitude of blade (Late Observation)	Horizontal	187
		Deflexed	3
		Very short	138
		Short	109
9	Stem length	Medium	143
		Long	142
		Very long	20
10	Stam anthogyanin aclouration of nodes	Absent	545
10	Stem anthocyanin colouration of nodes	Present	4

Table 3: DUS characteristics of panicle

S. No.	DUS Characteristics	State	Observation
		Early	67
1	Heading time	Medium	189
1	Heading time	Late	153
		Very late	138
2		Very short	9
		Short	11
	Length of main axis	Medium	132
		Long	291
		Very long	109
		Straight	188
3	Curvature of main axis	Semi straight	161
3	Curvature of main axis	Deflexed	116
		Drooping	87
4	Awns	Present	188
		Yellowish White	35
		Brown	37

		Light purple	2
		Purple	4
		Black	110
		Tip only	62
		Upper half only	20
		Whole length	106
		Erect	182
		Erect to semi-erect	1
5	Branches	Semi erect	179
		Semi-erect spreading	102
		spreading	13
		Enclosed	2
		Partly	83
6	Exsertion	Just	1
		moderate	127
		Well	339

Table 4: DUS characteristics of spikelet

S.No	DUS Characteristics	State	Observation
		Absent	3
		Weak	192
1	Pubescence of lemma	Medium	154
		Strong	197
		Very strong	2
		Absent	90
		Weak	222
2	Lemma colour	Medium	144
		Strong	87
		Very strong	5
		White	518
		Light green	3
3	Stigma colour	Yellow	1
		Light purple	1
		Purple	25
		White	10
		Yellowish	205
4	Colour of tip of lemma	Brown	197
4	Colour of up of lemma	Red	2
		Purple	54
		Black	81
		Straw	61
5	Sterile lemma colour	Gold	11
5	Sterne lemma colour	Red	1
		Purple	3

Table 5: DUS characteristics of Whole plant

		Extra vigorous	172
		Vigorous	269
1	Vegetative vigour	Normal	107
		Weak	2
		Very week	1
		Very high (>25)	38
		Good (20-25)	444
2	Tillering ability	Medium (10-19)	63
		Low (5-9)	2
		Very low (<5)	1
		Semi-dwarf (90-110 cm)	160
3	Plant height	Intermediate(110-130cm)	269
		Tall (>130cm)	121
4	Panicle threshability	Difficult (<1%)	4
		Moderately difficult (1-5%)	57

		Intermediate (6-25%)	261
		Loose (26-50%)	195
		Easy (51-100%)	30
		Excellent	115
		Good	201
5	Phenotypic Acceptability	Fair	215
		Poor	16
		Unacceptable	1

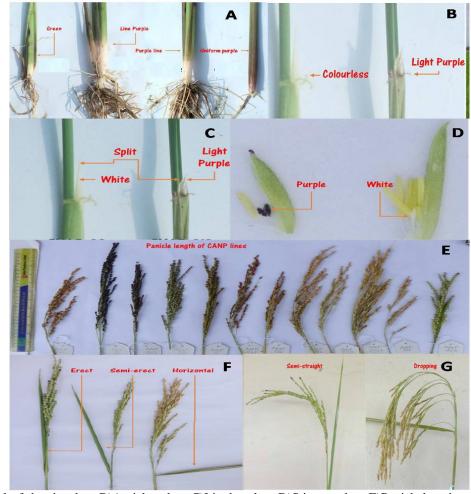


Fig. 1: A)Basal leaf sheath colour B)Auricle colour C)Ligule colour D)Stigma colour E)Panicle length variation F)Flag leaf attitude G) Panicle curvature

Acknowledgements

The authors acknowledge the Department of Biotechnology (DBT), New Delhi, India for providing funds for carrying out the research work. Sathish Kumar P Thank Dr. P. Sudhakar and Dr. A. Krishna Satya, Department of Biotechnology, Acharya Nagarjuna University (ANU), Guntur, India for the Ph.D. registration.

References

- Buttery, R.G.; Lilng, L.C. and Juliano, B.O. (1982). 2-Acety-1-pyrroline: An important aroma component of cooked rice. Chem Ind, 958–959.
- Bhatti, M.S. (1998). Crop gene pools in the mountain areas of Pakistan and threats. In: Pratap T, Sthapit B (eds) Managing agro biodiversity. ICIMOD, Kathmandu, Nepal, 323–333.
- Bhattacharjee, P.; Singhal, R.S. and Kulkarni, P.R. (2002). Basmati rice: A review. Intl J Food Sci Tech., 37: 1–12.

- Bradbury, L.M.T.; Fitzgerald, T.L.; Henry, R.J.; Jin, Q. and Waters, D.L.E. (2005). The gene for fragrance in rice. Plant Biotech J., 3: 363–370.
- Bradbury, L.M.T.; Gillies, S.A.; Brushett, D.J.; Waters, D.L.E. and Henry, R.J. (2008). Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol., 68: 439–449.
- Chaudhary, P.; Gauchan, D.; Rana, R.B.; Sthapit, B.R. and Jarvis, D.I. (2006). Potential loss of rice landraces from a terai community in Nepal: a case study from Kachorwa, Bara. PGR Newslett., 137: 14–21.
- DRR (2013). Laboratory Manual on Rice Grain Quality: Physico-chemical & Molecular Procedures. Directorate of Rice Research, Hyderabad, 29.
- Fitzgerald, M.A.; McCouch, S.R. and Hall, R.D. (2009). Not just a grain of rice: The quest for quality. Trends Plants Sci., 14: 133–139.
- Glaszmann, J.C. (1987). Isozymes and classification of Asian rice varieties. Ther App Sci., 74: 21–30.

- Hore, D.K. (2005). Rice diversity collection, conservation and management in northeastern India. Genet Resour Crop Evol., 52(8): 1129–1140.
- Itani, T. (1993). History, cultivation and breeding of aromatic rice varieties. Bull Hiroshima Prefect Univ 5(1/2): 267–281.
- International Rice Genome Sequencing Project (IRGSP, 2005) The map-based sequence of the rice genome. Nature.
- Juma, C. (1989). The gene hunter: biotechnology and the scramble for seeds. Princeton University Press, Princeton 14.
- Khush, G.S. (1997). Origin, dispersal, cultivation and variation of rice. Plant Mol Biol., 35: 25-34.
- Londo, J.P.; Chiang, Y.C.; Hung, K.H.; Chiang, T.Y. and Schaal, B.A. (2006). Phylogeography of Asian wild rice, *Oryza rufipogon*, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA, 103: 9578-9583.
- Liu, Y.; Yang, X.; Zhang, J.; Guan, J.; Wang, J. and Zhang, H. (2012). Distinctness Determination of DUS Test on Some Quantitative Characteristics of Rice. In: Zhu E., Sambath S. (eds) Information Technology and Agricultural Engineering. Advances in Intelligent and Soft Computing, vol 134. Springer, Berlin, Heidelberg

- Paule, C.M. and Powers, J.J. (1989). Sensory and chemical examination of aromatic and nonaromatic rices. J Food Sci., 54: 343–346.
- Patil, H.N. and Patil, V.H. (1994). An assessment of status of rice varieties in north konkan regions of Maharashtra. J Maharashtra Agric Univ., 19(1): 69–72.
- PPV & FRA (2007). Guidelines for the conduct of Test for Distinctiveness, Uniformity, and Stability on Rice (*Oryza sativa* L.). Protection of Plant Varieties and Farmers' Rights Authority (PPV & FRA), Government of India. SG/01/2007.
- Rana, J.C.; Negi, K.S.; Wani, S.A.; Saxena, S.; Pradheep, K.; Kak, A.; Pareek, S.K. and Sofi, P.A. (2009). Genetic resources of rice in the Western Himalayan region of India: current status. Genet Resour Crop Evol., 56: 963–973.
- Siddiq, E.A. (1992). Rice in India—potential areas for research and development. Oryza, 29: 1–6.
- Singh, R.K.; Gautam, P.L.; Saxena, S. and Singh, S. (2000a). Scented rice germplasm: conservation, evaluation and utilization. In: Singh RK, Singh US, Khush GS (eds) Aromatic rices. Kalyani, New Delhi, 107–133.
- Shimamoto, K. and Kyozuka, J. (2002). Rice as a model for comparative genomics of plants. Ann Rev Plant Biol., 53: 399-419.
- Sang, T. and Ge, S. (2007). The puzzle of rice domestication. J Integr Plant Biol., 49:760-768.