

THE EFFECT OF ORGANIC RESIDUES AND SPRAYING OF POTASSIUM AND ZINC ON SOME GROWTH CHARACTERISTICS AND YIELD OF POTATO Noora Hade Najem¹, Fadhil Hussain Al-Sahaf^{1*} and Hussien Jawad Albayati²

¹Department of Horticulture and Landscape gardening, Faculty of Agriculture, University of Kufa, Iraq. ²Department of Horticulture and Landscape gardening, Faculty of Agriculture, University of Mosul, Iraq. * Corresponding author. E-mail address: fadhilh.alsahaf@uokufa.edu.iq.

Abstract

A field experiment was conducted in Babylon province in 2018 spring season to examine the effect of adding organic residues (poultry dung, rice residues and palm fronds residues), spraying of zinc sulphate and potassium sulphate on some growth characteristics and yield of potato. Results showed significant effect of rice residues in comparison with control treatment in both plant height (97.81 cm) and leaf area (38.074 cm^2 , plant¹). While poultry dung treatment was significantly higher in the number of air stems (2.652), leaf content of total chlorophyll(45.704 mg.100gm⁻¹ soft weight), tubers number (14.00 tuber.plant⁻¹) and total yield of tubers (59.67 ton /h⁻¹) compare to control. Zinc sulphate treatment at concentration of 0.4 (gm.L⁻¹) was significant in comparison with control and growth characteristics and yield of potato plants were as follows: plant height (96.08 cm), the number of air stems (2.389 tuber.plant⁻¹), leaf area (36.944 cm². plant⁻¹), leaf content of total chlorophyll (45.704 mg.100gm⁻¹ soft weight), total tubers number (13.417 tuber.plant⁻¹) and total yield of tubers (53.03 ton $/h^{-1}$). Potassium sulphate treatment also showed significant effect at concentration of 5.0 (gm.L⁻¹) in all studied characteristics compare to control treatment.

Keywords : Organic residues, leaf feeding, potassium sulphate, zinc sulphate

Introduction

Potato (Solanum tuberosum L.) is a vegetable plant belonging to Solanaceae under Solanum genus that comprises more than 2000 species. Potatoes are annual plants, eudicots and most cultivated worldwide and consumed as a tuber crop (Hassan, 1999). After wheat, riceand maize potato is become the fourth in terms of yield and consumption. The planted area of this crop is 19089.328 h globally and total of 381,682,144 ton productivity, while the area that growing by potato in Iraq has reached 25.745 h with average productivity of 15.6 ton/h and total yield 402302 ton (FAO, 2017). These statistics is clearly indicating the reduction of potato yield in Iraq in comparison with other countries. The organic fertilization is considered as an important method to provide plants with essential nutrient requirements without any negative effect on the environment. In addition, it improves the structure of soil and makes nutrients ready for plants (Cook, 1972). Thus, current study is conducted due to the major roll of potassium and zinc elements in physiological processes inside plant by spraying those nutrients on leafs of potato plants. This research aims to increase potato yield and improve tubers by adding organic residues and spraying of zinc and potassium sulphate.

Materials and Methods

The experiment was conducted in two farms, the first one located in Keffel, Babylon province in 2017 first spring season and the second farm in Debla South of Babylon province in 2018second spring season. Potato seeds of SYLVANA cultivar for first spring season were planted in 1/2/2017 and for second spring season in 8/1/2018 on rows and the distance between these rows was 75 cm and between tubers was 25 cm. The total tubers in each row were 32 and the experimental unit area was $7.5m^2(1 \text{ meter was left})$ between each experimental unit to prevent the transportation between treatments). The experiment was designed using RCBD and the organic residues were put in the main plot. 36 treatments were applied in this experiment with three replicates for each treatment. The least significant difference (L.S.D.) was used to compare means at 5% level of significance (P>0.05) (Al Rawi and Khalafala, 2000).

Soil samples were taken from 0-30 cm depth of soil surface and analyzed in soil laboratory, Faculty of Agriculture, University of Kufa (Table 1). While the chemical and physical characteristics of adding fertilizers were analysed in laboratories of Green University of Al Oasim (Table 2).

Table 1 : Chemical and physical characteristics of field soil.

Soil characteristics	Standard Unit	Spring season 2017	Spring season 2018
PH	-		7.7
EC	$dS.m^{-1}$		2.2
N	%		1.4
Р	%		0.33
K	%		0.13
Organic material	%		1.07
Sand	%		22
Silt	%		54
Clay	%		24
Soil texture	_		

Soil characteristics	Palm fronds fertilizer	Rice residuesfertilizer	Poultry dungfertilizer
PH	7.4	6.18	7
$EC(Ds.m^{-1})$	5.148	4.11	9.5
N%	1.46	0.96	0.71
P%	0.454	0.083	1.311
K+%	2.89	2.147	2.5
Organic material	68.7	12.14	65

Table 2 : Chemical and physical characteristics of added fertilizers in this study.

All added fertilizers in this study were obtained from National Centre of Organic Agriculture, Najaf, Ministry of Agriculture and added to soil 10 days before planting potato tubers by sawing and mixing these fertilizers very well with soil as a first factor. The average use of palm fronds and rice residues fertilizers was 20 ton.h⁻¹ and 2 ton.h⁻¹ for poultry dung fertilizer. The second factor was spraying potato leafs with potassium sulphate (SO₄K₂) using three levels of concentrations (0, 2.5 and 5 gm.L⁻¹). The third factor was spraying potato leafs with zinc sulphate using three levels of concentrations (0, 2.5 and 5 gm.L⁻¹). After 45 days of planting, plants were sprayed by both potassium and zinc sulphate in tuber initiation stage then spraying was don twice every 15 days and the following plant characteristics were recorded:

- 1- **Plant height (cm):** 5 plants were chosen randomly from the middle rows and plant height was recorded.
- 2- Air stems number (stem.plant⁻¹): 5 plants were chosen randomly to calculate the number of air stems for each experimental unit.
- 3- Leaf area (cm².plant⁻¹): 30 discs of leafs were taken then put in oven at 70°C to dry it. Then the dry weight and leaf area were calculated using the procedure of Watson and Watson (1953).
- 4- Leafs content of total chlorophyll (mg.100g soft weight): Goodwin (1976) method was used to estimate total chlorophyll in leafs.
- 5- The average of total tubers number (tuber.plant⁻¹): The total number of tubers for each plant was calculated as follows: The average of total tubers number = the average of total number of tubers for each plant/total number of plants.
- 6- **The number of marketable tubers (tuber.plant**⁻¹): The average of marketable tubers was calculated using the above method after excluding infected and deformed tubers (Al-Musawi, 2014).
- 7- The average of marketing tuber weight (gm): calculated as follows:
- The average of marketing tuber weight=marketing yield/ number of marketable tubers
- 8- **Marketing yield (kg.h⁻¹):** calculated by divided marketable plants in the experimental unit on the total number of plants.
- 9- **Total tubers yield (ton.h⁻¹):** total yield = total yield of the experimental unit/experimental unit area.

Results and Discussion

Plant height (cm): Results of Table 3 for the first season showed that adding organic residues had significant effect on plant height. Poultry dung treatment gave greater plant height 97.81 cm in comparison with control treatment 88.00 cm. Zinc sulphate treatment had also significant effect on the plant height 96.08cm at 0.4 gm.L⁻¹ concentration while

control treatment gave 87.97cm. Potassium sulphate at 5 gm.L-1 increased plant height to 95.64 cm compare to 90.25 cm in control. In the second season, poultry dung treatment increased height to 67.21 cm compare to 60.34 cm in control. Zinc sulphate treatment at 0.2 gm.L⁻¹ gave the highest 63.44 cm, whereas 0.4 gm.L⁻¹ concentration gave 62.34 cm. The increasing rate of plant height may occur due to promotion of organic residues to enhance plant peaks to produce Auxins which increase the height (Shraqy and Kader, 1985). Organic fertilizers play the major roll in vegetative growth by improving soil characteristics which lead to make micro and macro elements ready for plants (Al-Obaydy, 2008). This result is in agreement with Al-Sultany (2015) and Al-Sharefy (2015) who reported that the uses of organic fertilizers lead to increasing plant height. The increasing of plant height in first season happened due to the use of zinc and potassium sulphate that lead to improve plant metabolism and plant growth (Al-Sahaf, 1989).

Air stems number (stem.plant⁻¹): Table 4 results of first season showed significant effect in the average number of air stems in poultry dung treatment that reached 2.652 stem. plant⁻¹ compare to 1.904 stem.plant⁻¹ in control treatment. Zinc sulphate treatment at 0.4 gm.L⁻¹ concentration also gave better average of stems number 2.389 in comparison with the control which gave 2.133 stem.plant⁻¹. Potassium sulphate treatment was not significant in air stems number. The second season results showed greatest and significant effect in both palm fronds and poultry dung residues treatments that reached 2.82 and 2.81 respectively compare to 1.92 in control while, there were no significant effect in Potassium and zinc sulphate treatments. The increasing number of air stems occurred due to the size of tubers that lead to increasing sprouts number and vegetative growth (Arsenaut and Christie, 2004). The adding of organic residues was increased air stems number compare to control which is in agreement with previous studies by (Pang and Letey, 2000; Haraldsen et al., 2000; Sharif Hossien et al., 2003).

Leaf area (cm.plant⁻¹): Table 5 results for the first season showed that rice residues had significant effect in leaf area which reached 38.074 cm.plant⁻¹. Zinc sulphate treatment had great size of leafs at 0.4gm.L⁻¹ concentration in comparison with control 30.667 cm.plant⁻¹. While potassium sulphate treatment had significant effect on leaf area at 5.00 gm.L⁻¹ concentration where it reached 35.444 cm.plant⁻¹ compare to 32.639 in control. In the second season, poultry dung treatment showed significant effect in leaf area 33.701cm.plant⁻¹ in comparison with control which recorded the lowest leaf area 29.762 cm.plant⁻¹. Zinc sulphate treatment at 0.4 gm.L⁻¹ concentrations showed higher value of leaf area 33.664 cm.plant⁻¹ compare with 29.659 in control. While the potassium sulphate treatment at $5.00 \text{gm}.\text{L}^{-1}$ concentration recorded 32.371 cm.plant⁻¹ and increased leaf area significantly compare to control treatment which recorded the lowest leaf area 31.202 cm.plant⁻¹. Organic

fertilizers contain many nutrients such as nitrogen, phosphor and potassium that are ready for absorption due to microorganisms' activities and lead to increase leaf area (Al Zahawy, 2007).

Leaf content of total chlorophyll (mg.100gm⁻¹ soft weight): Results of adding poultry dung showed significant effect in leaf content of total chlorophyll as it reached 45.704 mg.100gm⁻¹ soft weight compare to control treatment which recorded the lowest value 32.259 mg.100gm⁻¹ soft weight (Table 6). Zinc sulphate treatment was also significant at 0.4 gm.L⁻¹ concentration and gave highest level of chlorophyll 44.639 mg.100gm⁻¹ soft weight compare to 37.444 mg.100gm⁻¹ soft weight in control. Potassium sulphate treatment showed significant level of chlorophyll 43.306 mg.100gm⁻¹ soft weight at 5.00 gm.L⁻¹ concentration in comparison with 40.306 mg.100gm⁻¹ soft weight. In the second season results, poultry dung treatment gave the highest level of chlorophyll 34.459 mg.100gm⁻¹ soft weight compare to 31.308 mg.100gm⁻¹ soft weight in control. Zinc spraying treatment was also gave significant level of chlorophyll at 0.4 concentration where reached 33.459 mg.100gm⁻¹ soft weight. Potassium sulphate treatment in the second season was also showed significant level of chlorophyll at 2.5 gm.L⁻¹concentration and gave 32.992 mg.100gm⁻¹ soft weight compare to 32.706 mg.100gm⁻¹ soft weight in control. The increasing level of chlorophyll in potato leafs after adding poultry dung may occurred due to providing of nitrogen and magnesium by the organic residues (Table 2) which has a major role in chlorophyll molecule (ADDISCOTT, 1974). In addition, zinc sulphate contributes in many biological processes such as oxidation and formation of amino acid (Tryptophan) that consists of IAA Auxin (Tsui, 1984) which contributes in chlorophyll formation and producing energy and construction of nucleic, amino and fatty acids (AlNaamy, 2011).

Total tubers number (tuber.plant⁻¹): Table 7 results showed that there was significant effect of adding poultry dung where the total tubers number reached 14.00 tuber.plant⁻¹ in comparison with 10.204 tuber.plant⁻¹ in control treatment. Zinc sulphate treatment gave the highest number of tubers 13.417tuber.plant⁻¹ at 0.4 gm.L⁻¹ compare to 10.597 in control. While potassium sulphate treatment gave a total tuber number of 12.972 tuber.plant⁻¹at 5.00 gm.L⁻ ¹compare to 11.500 in control.In the second season results, poultry dung treatment gave 13.241 tuber.plant⁻¹ compare to 7.815 tuber.plant⁻¹ in control. Zinc spraying treatment was also gave 13.625 tuber.plant⁻¹ at 0.4 concentration compare to 8.250 tuber.plant⁻¹in control. Potassium sulphate treatment in the second season was also showed significant tuber number at 5 gm.L⁻¹ concentration and gave 11.931 tuber.plant⁻¹ compare to 10.153tuber.plant⁻¹in control. Organic fertilizers play the major roll in vegetative growth by improving soil characteristics which lead to absorb water and nutrients elements ready for plants (Grandy et al., 2002) in addition to decrease lost elements by heavy irrigation (Tisadle et al., 1993).

6-**The number of marketable tubers (tuber.plant**⁻¹): Table 8 results showed that there was significant effect of adding poultry dung where the number of marketable tubers reached 8.667 tuber.plant⁻¹in comparison with 5.907 tuber.plant⁻¹ in control treatment. Zinc sulphate treatment gave the highest number of marketabletubers 8.083 tuber.plant⁻¹ at 0.4 gm.L⁻¹ compare to 5.625 in control. While potassium sulphate treatment gave a number of 7.722 tuber.plant⁻¹ at 5.00 gm.L⁻¹ compare to 6.306 in control. In the second season results, poultry dung treatment gave 7.778 tuber.plant⁻¹ compare to 4.426 tuber.plant⁻¹ in control. Zinc spraying treatment was also gave 7.903 tuber.plant⁻¹ at 0.4 concentration compare to 4.597 tuber.plant⁻¹ in control. Potassium sulphate treatment in the second season was also showed significant number of marketable tubers at 5 gm.L⁻¹ concentration and gave 6.806 tuber.plant⁻¹ compare to 5.778 tuber.plant⁻¹ in control. Organic residues play the major roll in vegetative growth such as plant height, the number of air stems, chlorophyll level and leaf area which reflected inprovidingnutrients in tubers and increase the number of marketable tubers (Mikitzel and Knowles, 1990).

The average weight of marketable tuber (gm.plant⁻¹): Table 9 results for the first season showed that there was significant effect of adding poultry dung where the number of marketable tubers reached 121.59 gm.plant⁻¹ in comparisons with 97.04gm.plant⁻¹in control treatments. Zinc sulphate treatment gave the highest average weight of marketable tubers 114.42gm.plant⁻¹at 0.4 gm.L⁻¹ compare to 106.14 in control. While potassium sulphate treatment gave average weight of 114.72 gm.plant⁻¹at 5.00 gm.L⁻¹ compare to 106.36 in control. In the second season results, poultry dung treatment gave 77.11gm.plant⁻¹ compare to 66.48gm.plant⁻¹ in control. Zinc spraying treatment was also gave 78.47gm.plant⁻¹ at 0.4 concentration compare to 68.32gm.plant⁻¹ in control. Potassium sulphate treatment in the second season was also showed significant average weight of marketable tubers at 5 gm.L⁻¹ concentration and gave 6.806 gm.plant⁻¹ compare to 5.778 gm.plant⁻¹ in control. The average weight of marketable tubers was higher in the first season than the second season and this may because decreasing number of tubers which lead to increase the average weight of marketable tubers in addition to low breath rate of plant parts at the increasing volume stage in the end of season which provides an excess on nutrients that stored in tubers (Hassan, 1999).

Marketing yield (kg.plant⁻¹): The first season results showed that there was significant effect of adding poultry dung where the marketing yield reached 1065 kg.plant⁻¹ in comparisons with 0.573kg.plant⁻¹ in control treatments (Table 10). Zinc sulphate treatment gave the highest marketing yield $0.941 \text{ kg.plant}^{-1}$ at 0.4 gm.L^{-1} compare to 0.603 in control. While potassium sulphate treatment gave marketing yield of 904 kg.plant⁻¹ at 5.00 gm.L⁻¹ compare to 679 in control. In the second season results, poultry dung treatment gave 0.605kg.plant⁻¹compare to 0.279 kg.plant⁻¹in control. Zinc spraying treatment was also gave 0.626kg.plant⁻¹ at 0.4 concentration compare to 0.318 kg.plant⁻¹ in control. Potassium sulphate treatment in the second season was also showed significant marketing yield at 5 gm.L⁻¹ concentration and gave 0.521 kg.plant⁻¹ compare to 0.421 kg.plant⁻¹ in control. The reason for increasing marketing yield when adding organic residues may due to contents of organic fertilizers which has many nutrients that provide perfect growth conditions and reflect on the increasing of marketing yield (Botteau, 2004).

The total yield of tubers (ton.h⁻¹): Results of first season showed that there was significant effect of adding poultry dung where the total yield of tubers reached 59.67 ton.h⁻¹in

comparisons with 32.89 ton.h⁻¹in control treatments (Table 11). Zinc sulphate treatment gave the highest total yield 53.03 ton.h⁻¹at 0.4 gm.L⁻¹ compare to 34.88 in control. While potassium sulphate treatment gave total yield of 51.01 ton.h⁻¹ at 5.00 gm.L⁻¹ compare to 39.04 in control. In the second season results, poultry dung treatment gave 35.68 ton.h⁻¹ compare to 17.98 ton.h⁻¹in control. Zinc spraying treatment was also gave 37.48 ton.h⁻¹ at 0.4 concentration compare to 19.13 ton.h⁻¹in control. Potassium sulphate treatment in the second season was also showed significant total yield at 5

gm.L⁻¹ concentration and gave 31.30 ton.h⁻¹ compare to 25.27 ton.h⁻¹in control. The significant increasing in organic fertilizer treatments occurred due to improvement of chemical and physical characteristics of soil when these fertilizers added which lead to more vegetative growth and increasing yield in the experimental unit (Al Zahawi, 2007; Al Muhammady, 2009). Organic residues was decreased pH value in soil which makes nutrients elements ready for plants in addition to produce hormones, Auxins and Gibberellins that promote plant growth and productivity (Al-Sahaf, 1994).

Second spring season			First sprir	ng season	Treatments				
Interaction	Pot	assium su	lphate	Interactio	Pota	ssium sulj	ohate		
of magiduag		g.L ⁻¹		n of		g.L ⁻¹		Zinc	Organia regiduos
v zino				residues				sulphate	Organic residues
~ ZIIIC sulphoto	5	2.5	control	zinc ×	5	2.5	Control	g.L ⁻¹	
suipitate				sulphate					
60.21	60.23	60.30	60.10	84.67	86.00	84.33	83.67	Control	
60.28	60.30	60.27	60.27	89.00	90.33	88.67	88.00	0.2	Control
60.52	60.57	60.57	60.43	90.33	92.67	90.67	87.67	0.4	
65.47	64.27	64.50	67.63	88.89	90.33	90.00	86.33	Control	Development of the second
69.33	67.20	70.40	70.40	94.78	99.00	94.67	90.67	0.2	$= \frac{1}{10000000000000000000000000000000000$
66.83	64.27	65.73	70.50	97.78	103.00	98.33	92.00	0.4	ton.na
62.06	62.30	61.97	61.90	92.22	98.00	91.33	87.33	Control	D'
62.38	62.23	62.60	62.30	100.00	102.00	99.33	98.67	0.2	Rice residues
62.97	63.17	63.13	62.60	101.22	102.00	102.00	99.67	0.4	20ton.na
61.63	61.57	61.93	61.40	86.11	88.67	86.00	83.67	Control	Palm fronds
61.76	61.70	61.63	61.93	95.22	98.33	95.33	92.00	0.2	residues
62.23	62.33	62.33	62.03	95.00	97.33	94.33	93.33	0.4	20ton.ha ⁻¹
2.521		n.s		1.020		1.880			LSD
Effect of	62.10	62.95	63.46	Effect of	95.64	92.92	90.25	Effect of p	otassium sulphate
organic		0.957		organic		0.571	•		LCD
residues		0.857		residues		0.371			LSD
60.34	60.37	60.38	60.27	88.00	89.67	87.89	86.44	Control	
								Poultry	
67.21	65.24	66.88	69.51	93.81	97.44	94.33	89.67	dung	
								2 ton.ha ⁻¹	Interaction of
								Rice	residues
62.47	62.57	62.57	62.27	97.81	100.67	97.56	95.22	residues	×notassium
								20ton.ha ⁻¹	sulnhate
								Palm	suipilute
61.87	61 87	61 97	61 79	92.11	94 78	91 89	89.67	fronds	
01.07	01.07	01.57	01.79	>2.11	21170	1.05	07.07	residues	
- 120								20ton.ha ⁻¹	
2.439		2.629		0.567		1.042			LSD
Effect of				Effect of					
zinc				zinc					
sulphate	(2.00	(2.17	(2 = (sulphate	00 ==	07.02	05.25		T () A b
62.34	62.09	62.17	62.76	87.97	90.75	87.92	85.25	Control	Interaction of zinc
63.44	62.86	63.72	63.72	94.75	97.42	94.50	92.33	0.2	sulphate
62.14	62.58	62.94	63.89	96.08	98.75	96.33	93.17	0.4	potassium × sulphate
0.664		n.s	1	0.563		n.s	1		LSD

Table 3 : The effect of zinc and potassium and their interaction on plant height.

Second spring season					First spring	Treatments			
Potassium	Interaction of	sulph	nate	Interaction of	Po	tassium sulph	ate	Zinc sulphate	Organic
g.I	residues	1		residues		g.L ⁻¹		g L ⁻¹	residues
2.5	×zinc sulphate		control	zinc sulphate×	5	2.5	control	5.12	
1.86	1.88		1.80	1.867	1.867	1.933	1.800	control	
2.00	1.88		1.80	1.889	1.933	1.867	1.867	0.2	Control
2.00	2.00		2.00	1.956	1.933	2.000	1.933	0.4	
2.53	2.55		2.40	2.444	2.467	2.467	2.400	control	Doultry dung
3.00	2.93		2.80	2.667	2.667	2.467	2.867	0.2	2 ton ho ⁻¹
2.93	2.95		3.00	2.844	2.867	2.733	2.933	0.4	2 1011.118
2.20	2.26		2.26	2.022	2.133	2.000	1.933	control	Diag nasidwag
2.46	2.48		2.40	2.267	2.400	2.200	2.200	0.2	20ton ha ⁻¹
2.80	2.80		2.80	2.378	2.400	2.333	2.400	0.4	201011.118
2.80	2.80		2.80	2.200	2.267	2.333	2.000	control	Palm fronds
2.86	2.86		2.86	2.400	2.400	2.467	2.333	0.2	residues
2.86	2.82		2.80	2.378	2.400	2.333	2.400	0.4	20ton.ha ⁻¹
0.1	0.068	2				n.s		L	SD
2.52	Effect of organic		2.47	Effect of organic	2.311	2.261	2.256	Effect of pota	ssium sulphate
0.0	residues	7		residues		n.s		L	SD
1.95	1.92		1.86	1.904	1.911	1.933	1.867	control	
2.82	2.81		2.73	2.652	2.667	2.556	2.733	Poultry dung 2 ton.ha ⁻¹	Interaction of
2.48	2.51		2.48	2.222	2.311	2.178	2.178	Rice residues 20ton.ha ⁻¹	residues ×potassium
2.84	2.82		2.82	2.326	2.356	2.378	2.244	Palm fronds residues 20ton.ha ⁻¹	sulphate
0.0	0.051	4		0.095		0.140		L	SD
	Effect of zinc			Effect of zinc					
	sulphate			sulphate					
2.35	2.37		2.31	2.133	2.183	2.183	2.033	control	Interaction of
2.58	2.54		2.46	2.306	2.350	2.250	2.317	0.2	zinc sulphate
2.65	2.64		2.65	2.389	2.400	2.350	2.417	0.4	potassium × sulphate
0.0	0.032	0		0.058		n.s		L	SD

Table 4 : The effect of adding organic residues and spraying potassium and zinc sulphate and their interaction on air stems numbers of potato plants.

Table 5	The effect	of adding	organic residues and	1 spraving pa	stassium and	zine sult	hate and t	heir interacti	on on leaf are	۶¢
1 abit 5	• The effect	or adding v	organic residues and	a spraying po	hassium and	Zine suip	mate and t	men miteraeti	on on rear are	<i>.a</i> .

				281						
	Second spri	ng season			First spring	g season		Treatments		
Interaction of	P	otassium sulp	hate	Interaction of	Po	tassium sulph	ate	Zine sulphoto	Organic	
residues		g.L ⁻¹		residues		g.L ⁻¹		Δinc surpliate α I ⁻¹	residues	
×zinc sulphate	5	2.5	control	zinc sulphate×	5	2.5	control	g.L		
29.081	30.253	28.620	28.370	28.000	29.667	27.667	26.667	Control		
30.311	31.290	30.360	29.283	31.556	31.667	31.667	31.333	0.2	Control	
29.893	30.593	29.937	29.150	32.667	33.000	32.333	32.667	0.4		
30.963	32.397	30.763	29.730	31.444	32.333	32.333	29.667	Control	Development along a	
34.150	34.837	34.133	33.480	33.556	34.667	33.000	33.000	0.2	2 ton ho ⁻¹	
35.991	36.140	35.910	35.923	37.222	41.667	38.000	32.000	0.4	2 ton.na	
29.407	29.290	29.317	29.613	33.778	36.667	33.667	31.000	Control	Discourt dass	
31.487	32.623	31.333	30.503	39.222	40.667	39.333	37.667	0.2	20ton ho ⁻¹	
33.392	33.540	33.503	33.133	41.222	41.667	41.000	41.000	0.4	201011.112	
29.183	28.963	28.623	29.963	29.444	31.667	30.333	26.333	Control	Palm fronds	
31.197	32.690	31.093	29.807	33.333	34.333	33.667	32.000	0.2	residues	
35.381	35.837	34.840	35.467	36.667	37.333	34.333	38.333	0.4	20ton.ha ⁻¹	
0.631		1.043		0.941		1.516	•	L	SD	
Effect of organic	32.371	31.536	31.202	Effect of organic	35.444	33.944	32.639	Effect of pota	ssium sulphate	
residues		0.302		residues		0.433		L	SD	
29.762	30.712	29.639	28.934	30.741	31.444	30.556	30.222	Control		
33 701	34 458	33 602	33.044	34.074	36 222	34.444	31 556	Poultry dung		
55.701	54.450	55.002	55.044	54.074	50.222	54.444	51.550	2 ton.ha ⁻¹	Interaction of	
31 429	31 818	31 384	31.083	38 074	39.667	38,000	36 556	Rice residues	residues	
51.425	51.010	51.504	51.005	50.074	57.007	50.000	50.550	20ton.ha ⁻¹	×potassium	
								Palm fronds	sulphate	
31.920	32.497	31.519	31.746	33.148	34.444	32.778	32.222	residues		
								20ton.ha ⁻¹		
0.326		0.562		0.547		0.842		L	SD	
Effect of zinc				Effect of zinc						
sulphate				sulphate		1	1	1	1	
29.659	30.226	29.331	29.419	30.667	32.583	31.000	28.417	Control	Interaction of	
31.786	32.860	31.730	30.768	34.417	35.333	34.417	33.500	0.2	zinc sulphate	
33.664	34.028	33.547	33.418	36.944	38.417	36.417	36.000	0.4	potassium ×	
	2						2 0.000		sulphate	
0.354		0.541		0.512		0.779		L	SD	

	Second spri	ng season			First spring	Treatments				
Interaction of residues	Po	otassium sulp g.L ⁻¹	hate	Interaction of residues	Ро	tassium sulpł g.L ⁻¹	ate	Zinc sulphate	Organic residues	
×zinc sulphate	5	2.5	control	zinc sulphate×	5	2.5	control	- g.L ⁻¹		
31.162	30.944	31.229	31.313	30.111	31.333	30.000	29.000	control		
31.254	31.178	31.402	31.181	33.333	35.000	33.667	31.333	0.2	Control	
31.508	31.288	31.579	31.655	33.333	34.000	33.667	32.333	0.4		
33.729	34.377	34.465	32.344	40.889	40.667	41.333	40.667	control	D K 1	
34.312	34.246	34.280	34.410	47.889	50.000	47.333	46.333	0.2	Poultry dung	
35.443	35.483	35.447	35.400	48.333	51.667	47.667	45.667	0.4	2 ton.na	
32.510	32.608	32.507	32.416	39.444	40.667	39.333	38.333	control	D:	
32.321	32.220	32.490	32.254	47.222	49.333	48.000	44.333	0.2	20ton ha ⁻¹	
32.288	32.385	32.237	32.241	49.111	49.333	49.000	49.000	0.4	201011.11a	
32.419	32.462	32.279	32.515	39.333	40.667	39.667	37.667	control	Palm fronds	
32.967	33.462	33.056	32.384	45.889	48.000	47.333	42.333	0.2	residues	
34.599	34.499	34.937	34.361	47.778	49.000	47.667	46.667	0.4	20ton.ha ⁻¹	
0.331		0.473		1.133	1.571			LSD		
Effect of organic	32.929	32.992	32.706	Effect of organic	43.306	42.056	40.306	Effect of potas	sium sulphate	
residues		0.124		residues		0.404		LS	D	
31.308	31.137	31.404	31.383	32.259	33.444	32.444	30.889	control		
34.495	34.702	34.730	34.052	45.704	47.444	45.444	44.222	Poultry dung 2 ton.ha ⁻¹	Interaction of	
32.373	32.404	32.411	32.303	45.259	46.444	45.444	43.889	Rice residues 20ton.ha ⁻¹	residues ×potassium	
33.328	33.474	33.424	33.087	44.333	45.889	44.889	42.222	Palm fronds residues 20ton.ha ⁻¹	sulphate	
0.237		0.290		0.890		n.s		LS	D	
Effect of zinc				Effect of zinc						
sulphate				sulphate				1		
32.455	32.598	32.620	32.147	37.444	38.333	37.583	36.417	control	Interaction of	
32.714	32.777	32.807	32.557	43.583	45.583	44.083	41.083	0.2	zinc sulphate	
33.459	33.414	33.550	33.414	44.639	46.000	44.500	43.417	0.4	potassium × sulphate	
0.163		0.234		0.520		0.752		LS	D	

 Table 6 : The effect of adding organic residues and spraying potassium and zinc sulphate and their interaction on leaf content of total chlorophyll.

T 11 F	TT1 CC .	C 11' '	• 1 1	•	• •		.1	1 . 1 1
Table / :	he effect	of adding organic	residues and	spraving not	assuum and z	inc subhate on	the average of	total tubers number
I upic / i	i ne enteet	or adding organic	residues una	opraying por	ussium una z	me suprate on	the average of	total tabels number.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							8 8 1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	tments	Trea		g season	First spring			ng season	Second spri		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Organic	Zine sulnhata	nate	tassium sulpl	Po	Interaction of	hate	otassium sulp	Pe	Interaction of	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	residues	α I ⁻¹		g.L ⁻¹		residues		g.L ⁻¹		residues	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		g.L	Control	2.5	5	zinc sulphate×	Control	2.5	5	×zinc sulphate	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Control	8.000	9.000	9.500	8.833	4.333	5.667	5.667	5.222	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Control	0.2	10.167	10.667	10.833	10.556	7.833	8.333	9.000	8.389	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.4	10.000	11.500	12.167	11.222	9.167	9.833	10.500	9.833	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Doultry dung	Control	11.667	12.000	13.000	12.222	8.833	10.833	12.333	10.667	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 ton ho ⁻¹	0.2	13.667	14.333	15.333	14.444	13.167	13.500	14.833	13.833	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 ton.na	0.4	13.667	15.667	16.667	15.333	15.000	15.000	15.667	15.222	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D!	Control	10.667	10.000	11.167	10.611	8.000	8.667	9.667	8.778	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20ton ho ⁻¹	0.2	12.000	11.000	13.500	12.167	10.667	11.667	13.333	11.889	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	201011.112	0.4	13.500	12.667	14.167	13.444	14.833	15.000	15.333	15.056	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Palm fronds	Control	10.000	10.500	11.667	10.722	7.333	8.333	9.333	8.333	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	residues	0.2	12.000	13.000	13.167	12.722	9.333	11.167	12.167	10.889	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20ton.ha ⁻¹	0.4	12.667	13.833	14.500	13.667	13.333	14.500	15.333	14.389	
Effect of organic residues 11.931 11.042 10.153 Effect of organic residues 12.972 12.014 11.500 Effect of potassium sulphate 7.815 8.389 7.944 7.111 10.204 10.833 10.389 9.389 Control Poultry dung 2 ton.ha ⁻¹ 13.241 14.278 13.111 12.333 14.000 15.000 14.000 13.000 Poultry dung 2 ton.ha ⁻¹ Interaction of residues 11.907 12.778 11.778 11.167 12.074 12.944 11.222 12.056 Rice residues 20ton.ha ⁻¹ ×potassium sulphate 11.204 12.278 11.333 10.000 12.370 13.111 12.444 11.556 Rice residues 20ton.ha ⁻¹ ×potassium sulphate 0.585 n.s 0.701 0.854 LSD LSD Effect of zinc sulphate sulphate 11.333 10.0250 12.472 13.208 12.250 11.958 0.2 in serulphate 13.625 14.208 13.583 13.083 13.417 1	SD	L		n.s		n.s		n.s		0.824	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ssium sulphate	Effect of pota	11.500	12.014	12.972	Effect of organic	10.153	11.042	11.931	Effect of organic	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SD	L		0.365		residues		0.310		residues	
13.241 14.278 13.111 12.333 14.000 15.000 14.000 13.000 Poultry dung 2 ton.ha ⁻¹ Interaction of residues 20ton.ha ⁻¹ 11.907 12.778 11.778 11.167 12.074 12.944 11.222 12.056 Rice residues 20ton.ha ⁻¹ ×potassium sulphate 11.204 12.278 11.333 10.000 12.370 13.111 12.444 11.556 Palm fronds residues 20ton.ha ⁻¹ ×potassium sulphate 0.585 n.s 0.701 0.854 LSD Effect of zine sulphate sulphate sulphate 11.250 12.333 11.167 10.250 12.472 13.208 12.250 11.958 0.2 zinc sulphate potassium × sulphate 8.250 9.250 8.375 7.125 10.597 11.333 10.375 10.083 Control Interaction of zinc sulphate potassium × sulphate 13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 zinc sulphate potassium × sulphate 0.410 n.s		Control	9.389	10.389	10.833	10.204	7.111	7.944	8.389	7.815	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	T	Poultry dung	13.000	14.000	15.000	14.000	12.333	13.111	14.278	13.241	
11.907 12.778 11.778 11.167 12.074 12.944 11.222 12.056 Rice residues 20ton.ha ⁻¹ residues ×potassium sulphate 11.204 12.278 11.333 10.000 12.370 13.111 12.444 11.556 Palm fronds residues 20ton.ha ⁻¹ sulphate 0.585 n.s 0.701 0.854 LSD Effect of zinc sulphate Effect of zinc sulphate Interaction of 11.250 Interaction of 12.333 Interaction of 13.417 Interaction of 14.375 Interaction of 13.417 Interaction o	Interaction of	2 ton.na									
11.204 12.278 11.333 10.000 12.370 13.111 12.444 11.556 Palm fronds residues 20ton.ha ⁻¹ sulphate 0.585 n.s 0.701 0.854 LSD Effect of zinc sulphate Effect of zinc sulphate Interaction of 20ton.ha ⁻¹ Interaction of 20ton.ha ⁻¹ Interaction of 20ton.ha ⁻¹ 8.250 9.250 8.375 7.125 10.597 11.333 10.375 10.083 Control Interaction of zinc sulphate 8.250 9.250 8.375 7.125 10.597 11.333 10.375 10.083 Control Interaction of zinc sulphate 13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 sulphate 0.410 n.s 0.436 n.s LSD Sulphate	×potassium	20ton.ha ⁻¹	12.056	11.222	12.944	12.074	11.167	11.778	12.778	11.907	
11.204 12.278 11.333 10.000 12.370 13.111 12.444 11.556 residues 20ton.ha ⁻¹ 0.585 n.s 0.701 0.854 LSD Effect of zinc sulphate Effect of zinc sulphate Interaction of 20ton.ha ⁻¹ Interaction of zinc sulphate 8.250 9.250 8.375 7.125 10.597 11.333 10.375 10.083 Control Interaction of zinc sulphate 11.250 12.333 11.167 10.250 12.472 13.208 12.250 11.958 0.2 13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 sulphate 0.410 n.s 0.436 n.s LSD 12.50 1.583	sulphate	Palm fronds									
Effect of zinc sulphate n.s 0.701 0.854 LSD 8.250 9.250 8.375 7.125 10.597 11.333 10.375 10.083 Control Interaction of zinc sulphate 11.250 12.333 11.167 10.250 12.472 13.208 12.250 11.958 0.2 zinc sulphate potassium × sulphate 13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 sulphate 0.410 n.s 0.436 n.s LSD LSD		residues	11.556	12.444	13.111	12.370	10.000	11.333	12.278	11.204	
0.585 n.s 0.701 0.854 LSD Effect of zinc sulphate Effect of zinc sulphate Effect of zinc sulphate Image: Control sulphate Image:		20ton.ha ⁻¹									
Effect of zinc sulphate Effect of zinc sulphate 8.250 9.250 8.375 7.125 10.597 11.333 10.375 10.083 Control Interaction of zinc sulphate 11.250 12.333 11.167 10.250 12.472 13.208 12.250 11.958 0.2 zinc sulphate 13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 potassium × sulphate 0.410 n.s 0.436 n.s LSD	SD	L		0.854		0.701		n.s		0.585	
sulphate sulphate 8.250 9.250 8.375 7.125 10.597 11.333 10.375 10.083 Control Interaction of 11.250 12.333 11.167 10.250 12.472 13.208 12.250 11.958 0.2 zinc sulphate 13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 potassium × sulphate 0.410 n.s 0.436 n.s LSD LSD						Effect of zinc				Effect of zinc	
8.250 9.250 8.375 7.125 10.597 11.333 10.375 10.083 Control Interaction of zinc sulphate 11.250 12.333 11.167 10.250 12.472 13.208 12.250 11.958 0.2 zinc sulphate 13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 potassium × sulphate 0.410 n.s 0.436 n.s LSD LSD						sulphate				sulphate	
11.250 12.333 11.167 10.250 12.472 13.208 12.250 11.958 0.2 zinc sulphate potassium × sulphate 13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 potassium × sulphate 0.410 n.s 0.436 n.s LSD	Interaction of	Control	10.083	10.375	11.333	10.597	7.125	8.375	9.250	8.250	
13.625 14.208 13.583 13.083 13.417 14.375 13.417 12.458 0.4 potassium × sulphate 0.410 n.s 0.436 n.s LSD	zinc sulphate	0.2	11.958	12.250	13.208	12.472	10.250	11.167	12.333	11.250	
0.410 n.s 0.436 n.s LSD	potassium × sulphate	0.4	12.458	13.417	14.375	13.417	13.083	13.583	14.208	13.625	
	SD	L		n.s		0.436		n.s		0.410	

	Second spri	ng season			First spring	Treatments			
Interaction of	P	otassium sulp	hate	Interaction of	Po	tassium sulph	ate	Zine sulphate	Organic
residues		g.L ⁻¹		residues		g.L ⁻¹		σ L ⁻¹	residues
×zinc sulphate	5	2.5	control	zinc sulphate×	5	2.5	control	g .12	
3.111	3.333	3.333	2.667	4.389	4.833	4.667	3.667	control	
4.667	5.000	4.667	4.333	6.444	6.833	7.000	5.500	0.2	Control
5.500	6.000	5.333	5.167	6.889	7.500	7.167	6.000	0.4	
6.056	6.833	5.833	5.500	7.111	8.000	7.000	6.333	control	Doultary dung
8.111	8.833	8.000	7.500	8.889	10.000	8.667	8.000	0.2	2 ton ho ⁻¹
9.167	9.500	9.000	9.000	10.000	11.333	10.000	8.667	0.4	2 ton.na
4.667	5.000	4.667	4.333	5.722	6.167	5.333	5.667	control	Diag nagiduag
6.667	7.667	6.667	5.667	7.056	7.833	6.667	6.667	0.2	20ton ho ⁻¹
8.778	9.000	8.833	8.500	7.667	8.167	7.333	7.500	0.4	201011.118
4.556	5.000	4.667	4.000	5.278	5.667	5.167	5.000	control	Palm fronds
6.000	6.667	6.000	5.333	6.944	7.833	7.000	6.000	0.2	residues
8.167	8.833	8.333	7.333	7.778	8.500	8.167	6.667	0.4	20ton.ha ⁻¹
0.426		n.s			n.s			L	SD
Effect of organic	6.806	6.278	5.778	Effect of organic	7.722	7.014	6.306	Effect of pota	ssium sulphate
residues		0.175		residues		0.265		L	.SD
4.426	4.778	4.444	4.056	5.907	6.389	6.278	5.056	control	
7.778	8.389	7.611	7.333	8.667	9.778	8.556	7.667	Poultry dung	Interaction of
6.704	7.222	6.722	6.167	6.815	7.389	6.444	6.611	Rice residues	residues
								20ton.ha	×potassium
() ()	6.022	6 2 2 2	E E E C		7 2 2 2	6 770	5 000	Palm fronds	suipnate
6.241	6.833	6.333	5.556	0.00/	1.333	6.778	5.889	residues	
0.222				0.562		0.658		20ton.na	۶D
0.332		11.8		0.302		0.038		L	3D
sulphate				sulphate					
4 597	5.042	4 625	4.125	5.625	6 167	5 542	5 167	control	Interaction of
6.361	7.042	6.333	5.708	7.333	8.125	7.333	6.542	0.2	zinc sulphate
7.903	8.333	7.875	7.500	8.083	8.875	8.167	7.208	0.4	potassium × sulphate
0.197		n.s		0.275		n.s	1	L	SD

Table 8 : The effect of adding organic residues and spraying potassium and zinc sulphate and their interaction on the number of marketable tubers.

Table 9 : The effect	of adding of	organic	residues a	and sprayin	g potassium	i and z	zinc sulphate	e and	their	interaction	on the	e average	weight	of
marketable tuber.														

	Second spri	ng season			First spring		Treatments		
Interaction of	P	otassium sulp	hate	Interaction of	Po	, tassium sulph	nate	7to a colorbata	Organic
residues		g.L ⁻¹		residues		g.L ⁻¹		Zinc suipnate	residues
×zinc sulphate	5	2.5	control	zinc sulphate×	5	2.5	control	g.L	
63.00	63.67	63.33	62.00	97.56	97.33	98.00	97.33	control	
65.22	66.67	64.67	64.33	96.78	94.67	97.67	98.00	0.2	Control
71.22	73.33	71.00	69.33	96.78	101.00	97.33	92.00	0.4	
72.78	73.67	73.00	71.67	116.33	121.67	115.33	112.00	control	Doultwy dung
75.67	78.00	75.33	73.67	125.00	127.00	128.33	119.67	0.2	2 ton ho ⁻¹
82.89	85.33	83.00	80.33	123.44	120.67	126.00	123.67	0.4	2 ton.na
69.33	72.33	69.67	66.00	108.00	113.33	108.33	102.33	control	Diag residues
74.33	75.67	74.00	73.33	111.78	123.33	111.67	100.33	0.2	20ton ha ⁻¹
81.00	83.33	81.67	78.00	118.33	122.00	119.67	113.33	0.4	201011.118
68.17	72.00	68.50	64.00	102.67	108.67	104.33	95.00	control	Palm fronds
74.67	76.00	74.33	73.67	114.22	122.33	111.00	109.33	0.2	residues
78.78	80.00	78.67	77.67	119.11	124.67	119.33	113.33	0.4	20ton.ha ⁻¹
1.220		2.122		3.421		5.446		L	SD
Effect of organic	75.00	73.10	71.17	Effect of organic	114.72	111.42	106.36	Effect of pota	ssium sulphate
residues		0.630		residues		1.550		L	SD
66.48	67.89	66.33	65.22	97.04	97.67	97.67	95.78	control	
77.11	79.00	77.11	75.22	121.59	123.11	123.22	118.44	Poultry dung 2 ton.ha ⁻¹	Interaction of
74.89	77.11	75.11	72.44	112.70	119.56	113.22	105.33	Rice residues 20ton.ha ⁻¹	residues ×potassium
73.87	76.00	73.83	71.78	112.0	118.56	111.56	105.89	Palm fronds residues 20ton.ha ⁻¹	sulphate
0.798		n.s		2.605		3.379		L	SD
Effect of zinc				Effect of zinc					
sulphate				sulphate					
68.32	70.42	68.62	65.92	106.14	110.25	106.50	101.67	control	Interaction of
72.47	74.08	72.08	71.25	111.94	116.83	112.17	106.83	0.2	zinc sulphate
78.47	80.50	78.58	76.33	114.42	117.08	115.58	110.58	0.4	potassium × sulphate
0.635		n.s		1.617		n.s		L	SD

Second spring season				First spring season				Treatments		
Interaction of	Potassium sulphate			Interaction of	Potassium sulphate			Zinc sulphate	Organic	
residues	g.L ⁻¹			residues	g.L ⁻¹				residues	
×zinc sulphate	5	2.5	control	zinc sulphate×	5	2.5	control	5.12		
0.196	0.212	0.211	0.165	0.428	0.470	0.457	0.357	control		
0.304	0.333	0.301	0.278	0.622	0.646	0.683	0.538	0.2	Control	
0.392	0.440	0.378	0.358	0.669	0.757	0.697	0.552	0.4		
0.441	0.503	0.426	0.394	0.825	0.973	0.807	0.696	control	Poultry dung 2 ton.ha ⁻¹	
0.614	0.689	0.602	0.552	1.113	1.268	1.112	0.958	0.2		
0.760	0.810	0.747	0.723	1.257	1.441	1.260	1.072	0.4		
0.324	0.361	0.324	0.285	0.620	0.697	0.581	0.581	control	Rice residues 20ton.ha ⁻¹	
0.496	0.580	0.493	0.415	0.792	0.965	0.745	0.668	0.2		
0.711	0.750	0.721	0.662	0.907	0.995	0.877	0.850	0.4		
0.311	0.360	0.319	0.256	0.541	0.616	0.537	0.472	control	Palm fronds	
0.448	0.506	0.446	0.392	0.797	0.958	0.776	0.655	0.2	residues	
0.643	0.706	0.655	0.569	0.929	1.058	0.974	0.755	0.4	20ton.ha ⁻¹	
0.031		n.s		0.075		n.s	•	LSD		
T.ee	0.521	0.468	0.421	Effect of organic	0.904	0.792	0.679	Effect of pota	ssium sulphate	
residues	0.012			residues	0.029			LSD		
0.297	0.328	0.297	0.267	0.573	0.625	0.612	0.482	control		
0.605	0.667	0.591	0.556	1.065	1.227	1.060	0.908	Poultry dung 2 ton.ha ⁻¹	Interaction of	
0.510	0.563	0.513	0.454	0.773	0.885	0.734	0.699	Rice residues 20ton.ha ⁻¹	residues ×potassium	
0.468	0.524	0.473	0.406	0.756	0.877	0.762	0.627	Palm fronds residues 20ton.ha ⁻¹	sulphate	
0.023	0.029			0.047	0.062			L	SD	
Effect of zinc				Effect of zinc						
sulphate				sulphate			-			
0.318	0.359	0.320	0.275	0.603	0.689	0.595	0.526	control	Interaction of	
0.466	0.527	0.460	0.409	0.831	0.959	0.829	0.705	0.2	zinc sulphate	
0.626	0.676	0.625	0.578	0.941	1.063	0.952	0.807	0.4	potassium × sulphate	
0.014	n.s			0.040	n.s			LSD		

Table 10 : The effect of adding organic residues and spraying potassium and zinc sulphate and their interaction on marketing yield.

Table 11 : The effect of adding organic residues and spr	raying potassium and zinc sulphate and their interactio	n on the total yield of tubers.
~		

Second spring season				First spring season				Treatments	
Interaction of	Potassium sulphate			Interaction of	Potassium sulphate			Zinc sulphate	Organic
residues	g.L ⁻¹			residues	g.L ⁻¹			σ L ⁻¹	residues
×zinc sulphate	5	2.5	control	zinc sulphate×	5	2.5	control	g.22	
11.70	12.68	12.69	9.72	25.27	27.59	26.70	21.53	Control	
18.68	20.21	18.63	17.21	35.41	36.60	38.41	31.22	0.2	Control
23.56	26.28	23.00	21.40	38.00	42.90	39.52	31.57	0.4	
26.07	29.66	25.48	23.06	46.76	54.58	45.74	39.96	Control	Poultry dung 2 ton.ha ⁻¹
36.46	40.71	35.67	33.00	62.32	70.49	62.35	54.13	0.2	
44.52	47.72	43.67	42.17	69.93	79.72	70.22	59.84	0.4	
19.97	23.00	19.66	17.26	35.68	39.87	33.51	33.65	Control	Rice residues 20ton.ha ⁻¹
30.29	35.27	29.96	25.64	45.01	54.49	42.04	38.49	0.2	
42.77	45.07	43.28	39.96	51.49	56.27	49.65	48.55	0.4	
18.80	21.73	19.25	15.41	31.79	36.05	31.48	27.84	Control	Palm fronds
27.16	30.43	27.37	23.70	45.59	53.97	44.63	38.17	0.2	residues
39.06	42.89	39.66	34.64	52.71	59.64	55.00	43.47	0.4	20ton.ha ⁻¹
1.805	n.s			3.982	n.s			LSD	
Effect of organic	31.30	28.19	25.27	Effect of organic	51.01	44.94	39.04	Effect of pota	assium sulphate
residues		0.660		residues	1.578			LSD	
17.98	19.72	18.11	16.11	32.89	35.70	34.88	28.11	Control	
35.68	39.37	34.94	32.74	59.67	68.26	59.44	51.31	Poultry dung 2 ton.ha ⁻¹	Interaction of
31.01	34.44	30.97	27.62	44.06	50.21	41.74	40.23	Rice residues 20ton.ha ⁻¹	residues ×potassium
28.34	31.68	28.76	24.58	43.36	49.89	43.71	36.49	Palm fronds residues 20ton.ha ⁻¹	sulphate
1.395	1.636			2.518	3.357			LSD	
Effect of zinc				Effect of zinc					
sulphate				sulphate					
19.13	21.77	19.27	16.36	34.88	39.52	34.36	30.75	Control	Interaction of
28.15	31.66	27.91	24.89	47.08	53.89	46.86	40.50	0.2	zinc sulphate
37.48	40.49	37.40	34.54	53.03	59.63	53.60	45.86	0.4	potassium × sulphate
0.842		n.s		2.104		n.s		L	.SD

Conclusion

This study was confirmed that the using of organic residues (poultry dung, rice residues and palm fronds residues), spraying of zinc sulphate and potassium sulphate was significant in most studied characteristics such as vegetative growth of potato plant, yield and quality. These fertilizers were promoted the providing of nitrogen and magnesium which has a major role in chlorophyll molecule. In addition, zinc sulphate contributes in many biological processes such as oxidation and formation of amino acid which contributes in producing energy and construction of nucleic, amino and fatty acids. Moreover, improve chemical and physical characteristics of soil when these fertilizers added which lead to more vegetative growth and increasing yield in the experimental unit

References

- Addiscott, T.M. (1974). Potassium and the distribution of calcium and magnesium in potato plants. J. Sci. Food, 25: 1173–1183.
- Al-Muhammady, O.H.M. (2009). The use of animal fertilizers and whey as a method of organic farming and its impact on the growth and yield of potato. Ph.D. thesis, Baghdad University, Iraq.
- AL-Musawi, A.E.M. (2014). The effect of the number of mineral-organic fertilizer on the growth and yield of potato(*Solanum tuberosum* L.) and *Zea mays* var saccharta under the nested farming system. Ph.D. thesis, Technical College, Musayyib University, Iraq.
- AlNaamy, S.A.N. (2011). Principles of plant nutrition. Dar Ibn Al-Atheer for printing and publishing, University of Mosul, Iraq, 1440.
- Alobady, Abd Al Munaem Saaed Kaleel Hayawi (2005). Physiological studies in improving growth, yield, seed production and reducing watwr stress on potato(*Solanum tuberosum* L.). Ph.D. Thesis. University of Mosul, Iraq.
- AlRawi, K.M. and Abd AlAzez, M.K. (2000). Design and analysis of agricultural experements. Second edition, Dar Alketub for printingand publishing, University of Mosul, Iraq.
- Al-Sahaf, F.H. (1989). Applied plant nutrition. Baghdad University, Iraq, 259.
- Al-Sahaf, F.H. (1994). Native The effect of the number of spraying with nutrient solution (Alnahraen) on the growth and yield of potato (Estima cultivar). Iraqi Journal of Agricultural Sciences 25(1).
- Al-Sharefy, M.J.H. (2015). The effect of organic and chemical fertilizer on growth characteristics and yield of potato (*Solanum tuberosum* L.) Dezi cultivar. Euphrates Journalof Agricultural Sciences, 1(2): 50-53.

- AlSultany, A.N.A. (2015). The effect of organic and humic acid levels on growth characteristics and yield of potato. Master thesis, Green University of Al Qasim, Iraq.
- Al-Zahawi, S.M.A. (2007). The effect of organic fertilizers and soil coverage on growth, production and quality of potato.Master thesis, Baghdad University, Iraq.
- Arsenaut, W.J. and Christie, B.R. (2004). Effect of whole seed tuber size and pre-plant storage conditions on yield and tuber size distribution of russet Burbank. Amer. J. Potato, 10(3): 302–307.
- Boiteau, G. (2004). Assessing CPB (Colorado Potato Beetle) control option and N fertility in organic potato production. Organic Agric. Center of Canada.
- Cook, G.W. (1972). Fertilizer for maximum yield . Richard Clay (The Chaucer Press) Ltd. Bungay. Suffolk., Great Britain, 457.
- FAO (2008). http:// <u>www.fao</u>. Org /Potato 2008/ ar/potato/ factosheet.html
- Goodwin, T. (1976). Chemistry and Biochemistry of Plant pigments. 2nded. Academic Press. New York. San Francisco. USA., 373.
- Grandy, A.S.; Porter, G.A. and Erich, M.S. (2002). Organic amendment and rotation crop effect on the recovery of soil organic matter and aggregation in potato cropping systems. Soil Sci. Am. J., 66: 1311–1319.
- Haraldsen, T.K.; Asdal, A.; Grasdalen, C.; Nesheim, L. and Ugland, T.N. (2000). Nutrient balances and yields during conversion from convetional to organic cropping systems on silt loam and clay soils in Norway. Biol. Agric. Hortic., 17: 229-246
- Hassan, A.A.A. (1999). The production of potato, vegetabels crops series, production and agricultural practices. First edition, Arab publishing house, Egypt, pp 446.
- Mikitzel, L.J. and Knowles, N.R. (1990). Effect of potato seed-tuber age on plant establishment and amelioration of age-linked effects with auxin. Plant Physiol., 93: 967-975.
- Pang, X.P. and Letey, J. (2000). Oragnic farming: challeng of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Amer. J., 64: 247-253.
- Sharaqi, M.M. and Abd-Alhady, K. (1985). Plant physiology. Arabic group for publishing.
- Sharif Hossain, A.B.; Hakim, M.A. and Justus., M. (2003). Effect of manure and fertilizers on the growth and yield of potato Pakistan Journal of Biological Sciences, 6(14): 1243-1246.
- Tsui, A.S.A. (1984). Multiple-constituency framework of managerial reputational effectiveness.
- Watson, D.J. and Watson, M.A. (1953). Comprative Physiological studies on the growth of yield crops. 111. Effect of infection with beet yellow. Annals of Applied Biology.