PERFORMANCE OF NEWLY WHEAT (*TRITICUM AESTIVUM* L.) VARIETIES UNDER LOW FERTILITY AND LIMITED IRRIGATED CONDITIONS

Puspendra Kumar*, Rajesh Singh, V. P. Nagaraj, Anuj Kumar, Mayank Kumar1 and Ramesh Singh2

Department of Agronomy, S.H.I.A.T.S., Allahabad - 211 007 (Uttar Pradesh), India.
1Department of Soil Science, CSAUAT, Kanpur - 208 002 (Uttar Pradesh), India.
2Department of Plant Pathology, CSAUAT, Kanpur - 208 002 (Uttar Pradesh), India.

Abstract

A field experiment was conducted under low fertility and limited irrigated conditions during *rabi* 2011 at Wheat Breeding Farm, Central Research Farm, Shiats-Allahabad (U.P.), India. The experiment consisted of 9 varieties of wheat, which were laid out three replicated in randomized block design to study response of wheat under low fertility and limited irrigation condition having 9 varieties tired, 6 varieties i.e. [AAI-W1, (16)], [AAI-W3-(23)], [AAI-W4-(28)], [AAI-W5-(347)], [AAI-W6-(344)] and [AAI-W7(15)] have been recently put in state level trials, along with 3 standard check varieties i.e. K-9533, HD-2733 PBW-502. The study showed that AAI-W4-(28) Variety gave highest grain yield (5.06. tha⁻¹), harvest index (46.33), highest net income (Rs. 56804.5) and highest Benefit: cost ratio (2.87) K-.9533(C) among the other varieties tried.

Key words : Wheat, varieties, fertility, irrigation, wheat (*Triticum aestivum* L.).

Introduction

Since the time of green revolution numerous varieties have been developed with different response pattern to applied nutrients and irrigation frequency. It has been observed that recommended nutrient had been initially 100:60:40 kg’s of NPK/ha, respectively; which was later enhance to 120:60:40 kg’s NPK/ha, respectively. But the varieties failed to sustaining there yield. Therefore, the present recommendation has gone up to 150:80:60 kg’s NPK/ha, respectively. Thus, the increasing dose of nutrients isposing is serious economic consequences to farmers and there are reliant to adopt such high doses. Therefore, the view to evolved varieties which may response to lower doses of inputs, fertilizers does and irrigation frequencies. As a since of last eight years the university has evolved six varieties of wheat, which have already perform better in multilocational trials conducted by U.P. State government and are expected to be released in near future. The dose of 80:40:20 kg of NPK ha⁻¹ respectively has been recommended and the variety will be check with under three irrigation. Therefore, a field experiments “wheat varietal response to timely shown, restricted fertility & irrigation conditions” has been planned to be conducted during *rabi* 2011 at crop research farm of SHIATS, Allahabad, U.P., India.

Materials and Methods

A field experiment was conducted at Central Research Farm, SHIATS, Allahabad (U.P.), India, during *rabi* 2011. The experimental plot was sandy loam in texture, having a *pH* of 7.6, EC 0.22 dSm⁻¹, OC 0.34% and the available NPK were analyzed to be 239.0 kg/ha, 25.80 kg/ha and 257.40 kg/ha, respectively. The treatments consisting of 6 newly evolved wheat varieties and 3 standard check, the recommended dose of NPK 80:40:20 kg/ha. Wheat varieties were sown in rows 20 cm apart on 29 November in 2011. Half of N and full dose of phosphorus and potassium were applied in the form of urea, DAP and muriate of potash at the time of sowing. Remaining half of Nitrogen was applied in 2 equal splits, *i.e.* one-fourth at CRI stage and rest one-fourth at tillering stage. The crop received 3 uniform irrigations.

Author for correspondence: E-mail: pushpendrajaat07@gmail.com
Results and Discussion

Growth parameters

Data on plant height, number of tillers/running row meter, dry matter production and relative growth rate are presented in Table 1. The data clearly indicated that tallness of wheat varieties was different. The tallest plant height was influenced significantly by different varieties. The tallest plant heights were recorded in treatment T7 (120.49 cm) at 90 DAS due to varietal characteristics, as may be attributed to better proliferation of roots and increased uptake of nutrient. The finding confirms the results of Singh et al. (1996).

The number of tillers per running row meter has been presented in Table 1, which was significantly different at 90 DAS. The highest number of tillers per running row meter was recorded in treatment T8 (110.00).
The maximum dry weight (134.33g/5 plant) was recorded under the treatment T_3 ([K-9533] (C]) at 90 DAS, which was significantly higher than the other treatments.

The maximum relative growth rate (0.07 g/g/day) was observed under the treatment T_3 ([AAI-W4-(28)] at 90 DAS, which was not significantly higher than the other treatment. Probable reasons for such finding might be due to varietal character.

Yield components

Yield contributory characters such as no. of effective tillers/running row meter, length of spike (cm), no. of grains/spike and test weight were found to differ significantly under the various varieties shown in table 2. Critical observations of the table indicates that treatment T_8 (HD 2773) recorded the maximum no. of effective tillers (83.33), which was significantly higher than other varieties. The probable reasons for such findings might be due to better tiller count in treatment T_8 could have been because performance of varietal characteristics. This may be attributed due to timely seeded wheat was owing to relatively more favorable temperature experienced by the crop. Tewari and Singh (1993) and Verma et al. (1997) also reported similar findings.

The maximum length of spike (12.6cm) was measured in the treatment T_3 ([AAI-W6(34)], which was significantly higher than the other varieties. The maximum no. of grains spike$^{-1}$ (48.66) was counted in the variety ([AAI-W4-(28)], which was significantly higher than other varieties. Treatment T_2, T_5 and T_6 were statistically at par with T_3. The probable reasons for such findings might be due to varietal character, timely sowing what crop took more days to complete its lifecycle. Tewari and Singh (1993) and Verma et al. (1997) also reported similar findings.

The maximum test weight (49.33) was recorded under the variety [K-9533 (c)], which was significantly higher than the other varieties followed by variety T_2, T_3 and T_1, respectively statistically at par with T_7. This could be attributed to the fact that phosphorus (40 kg ha$^{-1}$) significantly influenced root development and metabolic processes in plant. These results are in conformity with those of Singh et al. (1996) and Vyas and Choudhary (2000).

Economic anlaysis

The highest net profit (Rs. 56804.5 ha$^{-1}$) and benefit cost ratio (2.87) was calculated under the variety [(K9533 (c)], followed by variety T_2 ([AAI-W5-(347)], T_8 (HD2733) and T_1 [AAI-W4 (28)] as depicted in table 3. The highest net profit and benefit cost ration calculated under the variety T_2 would have been due to better yield attributed and yield of wheat.

Conclusion

From the above finding, it may be concluded that variety [AAI W4 (281)] recorded maximum grain yield but variety K-9533 recorded the maximum B:C ratio (2.87), it is suggested that may be repeated one more year for confirmation of the result.

References

