ISSN 0972-5210

EFFECT OF DIFFERENT LEVELS OF FERTILIZERS AND GROWTH REGULATOR ON GROWTH, YIELD AND ECONOMIC OF BITTER GOURD (*MOMARDICA CHARANTIA*) UNDER NORTH EASTERN TRANSITION ZONE

S. J. Imamsaheb* and C. N. Hanchinmani

Department of Vegetable Science, College of Horticulture, Bidar - 585 403, India.

Abstract

The field experiment was conducted at College of Horticulture, Bidar, during the year 2013–2014 to know the effect of different levels of fertilizer (F_1 - 100% RDF, F_2 - 75% RDF, F_3 - 50% RDF and F_4 - 100% RDF + Azatobacter @ 500 gm.) and ethylene concentration (G_1 - Ethrel – 25 PPM, G_2 - Ethrel – 50PPM and G_3 Ethrel – 75 PPM) on growth, yield and economics of bitter gourd. From the data it was revealed that significantly higher fruit yield per plot and per heacter was recorded under F_4 -100 % RDF + Azosprillum 500gm/ha (11.11 kg/plot and 9.26 t/ha). Whereas, lower yield of 10.23 kg/plot and per heacter (8.52 t/ha) was recorded under treatment F_3 - 50% recommended NPK and significantly higher yield per plot and per heacter (11.46 kg/ plot and 9.55 t/ha) was recorded under G_3 (Ethrel 75 ppm). Among the treatments imposed, the treatment F_4G_3 obtained highest yield (10.88 t/ha) and net income (Rs. 61500/ha), gross income (Rs. 108750/ha) and B : C ratio of 2.30.

Key words : Fertilizer levels, growth regulator and economics.

Introduction

Bitter gourd (Momordica charantia L.) is a tropical and subtropical vine of the family Cucurbitaceae. It is widely grown for edible fruit, which is among the most bitter of all vegetables. The original home of the species is not known, other than that it is a native of the tropics. It is widely grown in South Asia and Southeast Asia, China, and Africa. The herbaceous tendril-bearing vine grows to 5 m. It bears simple, alternate leaves 4-12 cm across, with 3-7 deeply separated lobes. Each plant bears separate yellow male and female flowers (Rashid, 2004). Bitter gourd is usually grown under kitchen garden as a summer vegetable. But at present it is also being grown as commercial crop near the urban areas. Moreover, it can also be grown in any type of soil having good drainage system. From nutritional point of view, bitter gourd can be considered as nutrition rich fruit vegetable. It contains considerable amount of water (83-92%), carbohydrates (4.0-10.5%), protein (1.5-2.0%), fat (0.2-1.0%), minerals (0.5-1.0%) and fiber (0.8-1.7%). Ripe fruits are rich in vitamin-A (Akter et al., 2009). The role of growth regulators in various physiological and biochemical process in plant is well known from its identification. Growth regulators are known to have an effect on the production of earliest flower, yield (Gedam et al., 1998). The average ratio of staminate to pistillate flowers in monoecious lines throughout the flowering period is typically 50:1, but ratios can vary dramatically 9:1 to 48:1 by exogenous application PGRs In bitter gourd, it is possible to increase the yield level by increasing the fruit set percent by use of some growth regulator viz., ethylene at 2-4 leaf stage (Muhammad Awai S. Ghani et al., 2013). The yield of bitter gourd is low, which can be attributed to lack of improved varieties, imbalanced use of fertilizers and growth regulator. Hence, the present investigation carried out to know the effect of different levels of fertilizers and growth regulator on growth, yield and economic on bitter gourd (Momardica charantia) under North Eastern transition zone of Karnataka, India.

Materials and Methods

Field experiment was conducted during 2013 to 2014 at College of Horticulture, Bidar, to know the effect of different levels of fertilizers and growth regulator on

^{*}Author for correspondence: E-mail.imamjath@gmail.com

Table 1 : Vine length (cm) and number of branches of Bitter
gourd at different growth stages as influenced by
Different levels of fertilizer and ethylene.

Treatments	Vine	length	Number of		
	(C	m)	branches		
Fertilzirs levels					
1. F1-100% RDF	37.46	139.73	3.47		
2. F2-75% RDF	30.97	135.53	3.04		
3. F3-50% RDF	31.46	117.69	2.96		
4. F4-100% RDF+	42.25	143.24	3.64		
Azosprillum 500gm/ha					
Mean	35.53	134.05	3.27		
S.Em.±	2.14	8.40	0.96		
C.D. at 5%	3.76	0.13	0.49		
Growth regulator					
1. Ethrel – 25 PPM	34.24	133.05	3.35		
2. Ethrel –50 PPM	31.33	124.73	2.78		
3. Ethrel – 75	41.03	144.37	3.70		
Mean	35.53	134.05	3.27		
S.Em.±	1.49	4.41	4.03		
C.D. at 5%	11.98	0.18	NS		
F at the same V levels	2.57	NS	6.99		
S.Em.±	NS	0.32	NS		
C.D. at 5%					
V at the same or different					
Flevels	3.09	NS	6.13		
S.Em.±	NS	0.30	NS		
C.D. at 5%					

NS - Non significant.

growth, yield and economic on bitter gourd (Momardica charantia). The experiment was laid out using split plot design with total 12 treatments with three replications, main plot consist of four levels of fertilizers, F₁- 100% RDF, F₂- 75% RDF, F₃- 50% RDF and F₄- 100% RDF + Azatobacter @ 500 gm. sub plot includes three levels of ethylene G_1 - Ethrel – 25 PPM, G_2 - Ethrel –50PPM and G₃ Ethrel-75 PPM. The spacing adopted for planting was 120X90cm. The plots were irrigated immediately after the completion of sowing. Thinning of excess seedlings and gap filling was undertaken one week after germination. All cultural practices have followed as per package of practices of UHS, Bagalkot. The observations viz., plant height, no. of branches, days to 50% flowering, sex ratio, yield per plot and yield per ha. Economics were worked out. The collected data were subjected for statistical analysis.

Table 2: Yield and yield parameters of Bitter gourd as influenced by as influenced by different levels of fertilizer and ethylene.

Treatments	Days to 50 per cent flowering	Sex ratio	Fruit length (cm)	Fruit Diameter (cm)
Fertilizers levels				
 F1-100% RDF F2-75% RDF F3-50% RDF F4-100% RDF + Azosprillum 500gm/ha 	42.78 42.67 42.56 40.56	15.74 9.95 10.19 10.64	9.94 9.38 9.27 10.33	15.02 14.82 15.68 17.60
Mean	42.13	11.62	9.73	15.78
S. Em.± C.D. at 5%	0.38 NS	0.76 3.00	0.44 1.73	0.33 1.28
Growth regulator		I		1
 G1- Ethrel-25 PPM G2- Ethrel-50 PPM G3- Ethrel-75 PPM 	41.75 42.17 42.50	12.59 11.56 10.74	8.98 10.44 9.77	15.27 16.22 15.86.
Mean	42.13	11.62	9.73	15.78
S. Em.± C.D. at 5%	1.19 NS	0.95 2.83	0.73 2.16	0.51 1.51
F at the same G levels S.Em.± C.D. at 5%	2.06 NS	1.65 NS	1.26 NS	0.88 NS
G at the same F levels S.Em.± C.D. at 5%	1.82 NS	1.62 NS	1.18 NS	0.83 NS

NS - Non significant.

Results and Discussion

Effect of different levels of fertilizers

Significantly maximum vine length of 42.25 and 143.24 cm were recorded in F_4 (100% RDF + Azosprillum 500gm/ha) and lower vine length was recorded in F_3 (50% RDF) (31.46 and 117.69 cm) at 30 and 60DAS, respectively. Significantly maximum number of branches per vine recorded under the treatment F_4 (100% RDF + Azosprillum 500gm/ha) 3.64 (table 1). Significantly higher fruit length of 10.33 cm and fruit diameter of 17.60 cm were recorded under F_4 (100% RDF + Azosprillum 500gm/ha). This conforms the findings of Nasreen *et al.* (2013).

Data presented in table 2 raveled that among various fertilizer levels, significantly higher fruit yield per plot and per heacter was recorded under F_4 -100% RDF + Azosprillum 500gm/ha (11.11 kg/plot and 9.26 t/ha),

Table 3: Yield per plot and per hectare of Bitter gourd as influenced by as influenced by different levels of fertilizer and ethylene.

Treatments	Yield per plot (Kg)	Yield per hectare (topes)
Fertilizer levels		(tones)
1 E1 1000% DDE	10.72	8.04
1. F1-100% KDF	10.75	0.94
2. F2-75% KDF 2. F2-50% PDF	10.33	0.70
5. F5-50% KDF	10.23	0.32
4. F4-100% RDF + Azosprillum 500gm/ha	11.11	9.20
Mean	10.65	8.87
S. Em.±	0.15	0.13
C.D. at 5%	0.61	0.51
Growth regulator		•
1. G1-Ethrel – 25 PPM	10.50	8.75
2. G2-Ethrel –50 PPM	10.00	8.34
3. G3- Ethrel – 75 PPM	11.46	9.55
Mean	10.65	8.87
S. Em.±	0.29	0.24
C.D. at 5%	0.87	0.73
F at the same G levels		
S.Em.±	0.51	0.42
C.D. at 5%	NS	NS
G at the same F levels		
S.Em.±	0.47	0.39
C.D. at 5%	NS	NS

NS : Non significant.

Table 4 : Economics of growing Bitter gourd as influenced by different levels of as influenced by Different levels of fertilizer and ethylene.

Treatments	Yield (t/ha)	Gross returns	Cost of cultivation	Net returns	B:C ratio
		(Rs./ha)	(Rs./ha)	(Rs./ha)	
F1G1	8.88	88805.6	46300	42505.6	1.92
F1G2	8.66	86638.9	46300	40338.9	1.87
F1G3	9.28	92833.3	46300	46533.3	2.01
F2G1	8.61	86111.1	43450	42661.1	1.98
F2G2	8.61	86111.1	43450	42661.1	1.98
F2G3	9.11	91138.9	43450	47688.9	2.10
F3G1	8.22	82222.2	41250	40972.2	1.99
F3G2	8.43	84277.8	41250	43027.8	2.04
F3G3	8.92	89166.7	41250	47916.7	2.16
F4G1	9.27	92694.4	47250	45444.4	1.96
F4G2	7.64	76388.9	47250	29138.9	1.62
F4G3	10.88	108750.0	47250	61500.0	2.30

Note : Price of fruit Rs. 10 per kg.

whereas lower yield of 10.23 kg/plot and per heacter (8.52 t/ha) was recorded under treatment F_3 -50% recommended NPK. Momin *et al.* (2013) also recorded similar result.

Effect of different concentration of ethylene

Vine length of bitter gourd influenced significantly due to different concentration of ethylene at 30 and 60 DAS. The significantly higher vine length of 41.03 and 144.37 cm at 30 and 60 DAS, respectively was recorded under the treatment consisting of G_3 (Ethrel 75 ppm). The highest sex ratio was recorded in the treatment consisting G_1 (Ethrel 25 ppm) 12.59. This result aggress the findings of Momin *et al.* (2013) and Sreeramulu (1987) in bitter gurd.

Different concentration of ethylene excreted significant difference maximum fruit length of 10.44 cm and maximum fruit diameter of 16.22 cm were noticed under G_2 (Ethrel 50 ppm). Prabhu and Natarajan (2006) in Ivy gourd and Ghani *et al.* (2013) in bitter gourd reported similar results.

Significantly higher yield per plot and per heacter (11.46 kg/plot and 9.55 t/ha) was recorded under G_3 (Ethrel 75 ppm). Olivira *et al.* (2005) reported the similar results in pumkin.

Interaction

The interaction effects of various treatment combinations was found to be non significant.

Economics

The data on economics of bitter gourd as influenced by different fertilizer levels and ethylene concentration are presented in table 4.

Among the treatments imposed, the treatment F_4G_3 obtained highest yield (10.88 t/ha) and net income (Rs. 61500/ha), gross income (Rs. 108750/ha). This was followed by F_3G_3 , which produced 8.92 tonnes per hectare with Rs. 47916.7 per hectare, Rs. 89166.7 per hectare per hectare of net income, gross income, respectively. The lowest yield (7.64 t/ha) of bitter gourd was recorded in F_4G_2 with net income of Rs. 29138.9 per hectare, gross income of Rs. 76388.9 per hectare.

Higher B: C ratio (2.30) was recorded in the treatment F_4G_3 . Whereas, lower B:C ratio (1.62) was recorded in the treatment F_4G_3 .

References

Akter, L., M. S. Islam, M. N. Uddin and S. Ahmed (2009). Evaluation of New Bitter Gourd Germplasum. Research Report, 2008-2009. Horticulture Research Centre, BARI, Gazipur. p. 16.

- Gedam, V. M., R. B. Patil, Y. B. Suryawanshi and S. N. Mate (1998). Effect of plant growth regulators and boron on flowering, fruiting and seed yield in bitter gourd (*Mormordica charantia* L.). *Seed Res.*, **26**(1): 97-100.
- Momin, M. A., A. J. Islam, A. Hossain and M. M. Rashid (2013). Effect of plant growth regulators and fertilizer management practices on reproductive growth of bitter gourd (*Momordica charantia* L.). *Eco-friendly Agril. J.*, 6(12): 273-278.
- Muhammad, Awai, Amjad Ghani Muhammad, Qumer Iqbal, Aamir Nawaz, Tanveer Ahmad, Osama-Bin-bdul Hafeez and Abbas Mazhar (2013). Efficacy of Plant Growth Regulators on Sex Expression, Earliness and Yield Components in Bitter Gourd. *Pak. J. Life soc. Sci.*, **11(3)** : 218-224.
- Olivira, P. P., C. Ranjit and P. Satya (2005). Sex expression and phenotypic performance of local pumpkin cultivars as influenced by ethrep application. *Revista de Ciencias Agrarias*, **43** : 77-81.
- Prabhu, M. and S. Natarajan (2006). Effect of growth regulators on fruit characters and seediness in ivy gourd (*Coccinia* grandis L). Agricultural Science Digest, **26**: 188-190.
- Rashid, M. (2004). *Sabji Biggan*. University Press, Dhaka. Pp-99.
- Shamima Nasreen, R. Ahmed and Nazimuddin M. (2013). Requirement of N, P, K and S for yield maximization of bitter gourd (*Momordica charantia*). *Bangladesh J. Agril. Res.*, **38**(2): 355-361.
- Sreeramulu, N. (1987). Effect of ethrel on sex expression and endogenous auxin content in sponge gourd (*Luffa cylindrica*). *Indian J. Hort.*, **35** : 85-87.