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An Increase in weather risk is generally associated with increases in apple production risk. We consider weather-induced 
changes in the variation in apple output as a systemic risk in Kashmir. Relative weather and input impacts have been established 
on regional output volatility. For this reason, we have designed a development component with developing weather variables. 
Only in some places will rising instability be related to weather shifts. For climate effect analysis, models of only weather 
variables provide skewed yet fair approximations.
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INTRODUCTION

For years, environmental, social and economic debates 
have been open to climate change and its effects on 
horticulture development. This isn’t unexpected because 
the weather influences the yields and the variability of 
crops/fruits which are of concern on a macro-level for 
food safety purposes (Brown, Wheeler et al., 2015). 
The product at micro-level are also remarkable, as a low 
intensity of annual crop yields decreases income risk 
and leads to the stabilisation of the smallholding returns, 
which in turn may be of macro relevance in guaranteeing 
resilient food production. Therefore, deeper knowledge 
of what influences productivity unevenness in the major 
yield producing regions is necessary. It also helps growers 
adjust their orchard strategy to famous challenges and 
leads to a decrease in production shortages or better crisis 
management. Undisputedly long-term weather trends are 
shifting crop conditions and may have influenced crop 
yield variability already (Siebert and Ewert, 2012) and 
is recognised as a primary yield hazard of the mainly 
efficiently valuable crops (IPCC, 2014). There is evidence 
that extreme weather conditions in both temperate 
and tropical areas should happen more regularly and 
seriously in the future (IPCC, 2014). This would likely 
make growing fruits susceptible, with major impacts 
latently, especially in less developed regions, on crop 
yields and food security. Growers can influence inputs 
such as fertilizers, but cannot control the weather or 
impact developments on industry, soil or environmental 
policy. Weather for the farmers is exogenous and impacts 
crop yields directly. Furthermore, there are secondary 
consequences including input changes. As a result of the 
meteorological situation, weed development, pests, and 
diseases, for example, generally vary inputs through the 

production cycle. But how far does the overall risk of 
output really lye with changing weather? Climate is the 
major driver in horticultural production risks?

In this paper, we took apples as one of the most valuable 
cash crops, where there has been a significant upward 
trend in both yield levels and volatility. Our investigation 
focuses on Kashmir, which generates 71% of India’s 
apple production. Kashmir apple yields rose from 7.1 to 
10.1 metric tonnes ha-1 between 1990/91 and 2016/17. 
In Kashmir, real and nominal apple output volatility has 
increased in the 1990s despite a protracted era of relative 
yield stability in the 20th century. Especially alarming is 
the growing trend in relative yield heterogeneity, i.e. a 
higher risk-to-mean yield ratio.

In light of this, the research questions that will guide our 
study are mentioned as follows: How can rising relative 
productivity heterogeneity be explained? Can one believe 
that the debate of climate change has risen primarily 
as a result of changes in meteorological conditions, as 
measured by relative yield fluctuations?

This rise has many other causes. First, growers could 
modify their inputs due to changing prices for intruding 
and production (Miao et al., 2016). Since 2005, growers 
in Kashmir have been experienced to very drastic 
improvements in the orchard practices. Various reforms 
have increased apple’s relative competitiveness, by 
reducing price hold, subsidies and compulsory landfills. 
The impact on the input intensities and thus the yield of 
crops may have also led to improvements in the virtual 
productivity (Banse et al., 2008). In general, these policy 
reforms may have encouraged growers to use lower 
(marginal) land for manure production, which may 
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potentially have detrimental repercussions on average 
yield levels and increase variability. Plantings plants 
with a lower water potential on marginal soils could 
become more vulnerable than more suitable soils to 
drastic temperature and precipitation changes (Perkins, 
2015). In addition, productivity can be considered soil 
yield and specialisation effects (Yang et al., 1992). 
Partial consolidation activities in the horticulture sector 
in Kashmir (increased orchard sizes), considering the 
increasing pattern of marginal land cultivation with apple, 
could increase average returns per hectare. Although 
various studies consider how weather and plant yields 
interact with variance dependent on regression models 
(Chen et al., 2004), few researchers, for example (Lobell, 
2007) or the relation between weather and relative yield 
fluctuations of non-experimental yields (Ray et al., 2015). 
However, these authors do not consider changes in the 
inputs that cause stability. As far as we know, causes of 
yield uncertainty have not been dissociated from the core 
temperature and input generators to the present day. In 
this research we try to fill this void with a case study for 
apples in Kashmir and demonstrate this theory. Although 
we test the climate variables on harvest yields by means 
of time series regressions (Iglesias and Quiroga 2007), we 
are applying a panel data approach. In order to measure 
when and how the atmosphere and input risking in some 
areas of India have improved over time, we are using the 
benefits of the panel layout. In our method, we deduce 
from (Osborne and Wheeler, 2013) and demonstrate 
that inputs as well as weather are essential to understand 
yields and relatively variable results. Our analysis helps 
to discuss whether inputs are essential for the evaluation 
of the effect on cereal yields of climate change. In 
addition, it could be useful for potential adaptation tasks 
to consider how the weather conditions currently observe 
relative output variability. There are two key stages to 
our methodological study. First we establish an analytical 
model that is consistent with the approach to output 
functions of relative yield variability. We analyse crucial 
inputs, test appropriate functional kinds, and augment 
this feature with a plethora of weather factors that handle 
phenology development. Second, we dissect the relevance 
of this regression model in order to disentangle the 
weather-driven relative yield variability in connection to 
others’ approaches caused by feedback or regulation. We 
propose a substitute model that leaves significant inputs 
to enhance our understanding of whether to monitor 
input changes when referring to weather and yield. The 
assumption that the latter may be subject to omitted 
variables, shows no significant qualitative variations, 
while there are quantitative differences.

The philosophical structure and the associated literature 
are first developed and then followed by an analytical 
approach for the breakdown of crop volatility drivers after 
presenting the results. After this, we will write and debate 
and eventually conclude our findings.

Framework concept and associated literature

Numerous papers deal with weather influences on yield 
levels through both process simulation models, or through 
regression techniques (Muller and Robertson, 2014). The 
latter approach has two primary strands and is embedded 
in (Oury, 1965). First, a number of investigations in a 
regression model have to do with return and weather (Butler 
and Huybers, 2015). The weather effects are studied in the 
second strand within an input and input production feature 
system. This models handle exogenously the temperature, 
however, inputs which have to be changed to modify 
weather. For example, fertiliser strength is affected by 
precipitation levels. The temperature instead effects the 
growth season duration and hence leads to output levels, 
but never modifies the input mix shortly. There are still 
criticisms of the second strand in the literature, whereas 
the first set of models still tacitly acknowledges the reason 
to leave data. With improvements to the input balance 
in the short run, industrial roles frequently struggle to 
accomplish long-term climate change adjustments, for 
example modifying crop alternation or interchange land 
uses (Mendelsohn et al., 1994; Deschênes and Greenstone, 
2007). Hypothesizing yield as an input and weather 
feature could lead to a partial parameter approximation of 
(Kaufmann and Snell, 1997; Miao, 2016) etc., neglecting 
a category in estimation of the other group’s effect. Given 
this argument, curiously, a few recent papers integrate 
information or take other economic considerations into 
account in the weather impact research (Schlenker and 
Lobell, 2010; Lobell et al., 2011; Blanc, 2012 or Ward et 
al., 2014). In this regard, also large land effects have been 
demonstrated to influence pricing (Chen et al., 2004). 
Therefore, we rely on an approach to main inputs’ output 
functions.

However, it remains a challenge to distort the influence of 
environment and input on crop production and volatility 
(You et al., 2009). Technically, in the production functions 
system, a range of methods exist that measure weather 
impacts. We describe three main choices: weather 
variables collection, weather data aggregation thresholds 
and the practical type that determines the weather and 
weather performance relations. The structural part of the 
weather risk can be separated at the district level with 
aggregate data due to “averaged” peculiar shocks at a 
greater aggregation level (Woodard and Garcia, 2008). 
The downside of database loss is, on the other hand, 
the use of aggregated statistics. Environmental effects 
are frequently analysed at lower levels as they focus on 
location-specific consequences of climate change. We 
also believe that statistically better and more versatile 
solutions exist for modelling weather or yield structural 
risks (Gaupp et al., 2016; Xu et al., 2010). However, our 
strategy is to unravel the basic driving force behind apple 
production, apart from the temperature, materials, policies 
and macroeconomic shocks. As such, we incorporate 
perspectives from studies into risk and growth, livestock 
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and climate impacts.

MATERIAL AND METHODS

The variables described in production function are 
weather and phenology measures. The data has been 
extracted from Dept. of Statistics and Meteorological 
Department J&K. The relevant explanation of data and 
material method is presented in the following paragraphs. 

Production function for apple

For the years 1990-2015, we are analysing Kashmir. We 
use accounting data from the Statistics Directorate of 
the Kashmir Government to define output functions at 
regional levels.

Development mechanism is provided with one output 
(apple output) and eight inputs: money, labour, apple 
groves, electricity, and materials, seed/plant spending. 
We sum up fertiliser and plant protection in material 
inputs. The entire area utilised by orchard should, with 
the exception of property, labour and animal features, be 
deflated by national market values, with the exception of 
fallow and set-aside land.

Apple plants are known to have a positive specialisation 
and scale impact or adverse marginal soil yield effect 
(Kaufmann and Snell, 1997; Yang et al, 1992). On 
average, some 20 apple trees are planted by sample 
orchard of 1 Kanal. There have been significant historical 
variations between north and south Kashmir in the 
horticultural system (e.g. scale, hierarchical structure and 
ownership of technologies). For this reason, we employ 
a dummy variable. In order to capture policy and other 
macroeconomic effects, such the price surge in 2008-
2012, we take into account time-dummy elements.

Phenological stages and weather phases

The yearly data are combined with periodic weather 
measurements from the J&K Department of Meteorology.
For all J&K areas (Table 1) we can distinguish four 
macro-phenological periods and thus summarise all 
weather conditions accordingly. Day temperatures, 
however, exceed optimum heat levels and limit apple 
outputs. The opportunity for crop growth is largely 
caused by temperatures and sun radiation. To achieve 
these outcomes, the ambient temperature is split between 
temperatures below and above an optimal temperature 
of 150C which does not allow any rising circumstances. 
As a result, days with temperatures below the optimum, 
but over the minimum of 350C are recorded as increasing 
grade days. On the other side temperature above 250C 
contributes to heat stress and is summarised as destroying 
grading days for each phonological cycle.

The availability of horticultural water in the form of 
evapotranspiration is calculated by precipitation and by 

atmospheric requirements. We consider the probable 
evapotranspiration to properly take into account water 
availability.

The marginal effects of increased supply of water 
depend on current levels and can alter the signals. In 
other words, if real water supplies are below the optimal 
level, precipitation will have a beneficial effect on plant 
development. In the case of higher water supplies than 
optimal plants, precipitation will, on the other hand, prevent 
plant growth. Although the phenological times combine 
our environmental factors, the dry spells are not taken 
into consideration by the single volume of precipitation. 
Therefore, days without precipitation (DWP) are often 
considered to capture precipitation distributions.

Econometric strategy

The two steps that guide our study are explained in this 
section.

Table 1 Phenological periods

Period Stage
1 initial flowering 
2 pollinated bud heading
3 heading early ripening
4 early ripening harvest product

Empirical model apple yield variability in Kashmir

From the point of view of the economist, variable and 
almost fixed inputs seem relevant to remember. But 
economic theory has little to say about functional types, 
correlations between input and weather (Coelli et al., 
2005). Our model construction and selection method is 
therefore dependent on Greene’s analytical technique for 
selecting variables aiming to find a fitting model resilient 
against misspecification (Roberts et al., 2013).

Given the comparatively limited period available 
to us, we need to analyse a wealth of variables and 
concentrate on the important information. For example, 
at all phonological intervals, the selection of potentially 
ideal weather variables and the maximum probability of 
inputs is 12 and 6 respectively. Quadratic terminology, 
connectivity, weather and functional shape combinations 
are not included.

We are primarily working towards the identification of an 
adequate operational type for the manufacturing feature 
relating to production, district i apple yield at period t and 
inputs, indicated by Xjit where j lists resources, labour, 
land for apples, oil, materials, seedling and manures. 
Secondly, the required performance and weather feature 
must be determined for each agronomic phase.
For two components, apple returns are considered at 
approximated growth rates instead of the absolute returns 
at log differences. First of all, the apple output log ratio 
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represents a proportionate change over time. Second, 
from a statistical point of view, the study of first disparities 
provides benefits. In view of the optimistic data patterns, 
the first variations in trends in contrast with believing a 
deterministic pattern are more flexible (Brown, 2013). 
Additionally, possible root unit problems are generally 
solved by first distinction (Chen et al., 2004). In addition, 
initial distinctions remove unnoticed variability effects 
that are likely to arise in panel data and minimise serial 
association issues where data are continuous (Wooldridge, 
2009). The downside is that, on the basis of the Justice 
and Papal approach to development, the influence of, 
for example, weather or technical transition on yield and 
variation is not quantified at the same time as the proposal 
of (Chen et al., 2004). Log variations however also allow 
one to consider in the constants, but not explicitly, the 
influence of technology improvements, the consequences 
of ordinary productivity shifts. Many difficulties, including 
technological advancements, are constantly tested by 
the influence of CO2 fertilisation as well as variations in 
output. (Mc.Carl and Attavanich, 2014).

Table 2
 
Apple yield (100boxes/
kanal)

Mean sd Min   Max

69.81 9.23 28.28 88.5

Per Orchard Variables
Land apple (ha) 65.4 60.7 8.8 180.7
Land apple north (ha) 126.8 47.1 46.5 180.7
Land apple south (ha) 121.6 42.8 8.8 66.6
Total land (ha) 228.4 196.8 36.9 766.3
Total land north (ha) 248.3 74.7 96.9 366.3
Total land south (ha) 271.3 81.5 106.9 435.6
Capital (Rs ha-1) 173.7 72.5 97.8 309
Labour (Rs ha-1) 251.3 95.1 46.5 404.6
Energy (Rs ha-1) 141.3 33.8 96.4 270.9
Material (Rs ha-1) 319 68 173.9 617.4
Seedling/saplings (Rs ha-1) 83.5 29.2 41.9 176.3
Manure (livestock units 
ha-1) 0.4 0.2 0.1 0.9

Weather variables 
Pot. evapo-transpiration 
stage 133.3 15.2 103.1 180.6

Prec. Stage 1 413.4 76.3 219.6 576.6
Prec. Stage 1 north 413 78.7 227.2 562.3
Prec. Stage 1 south 413.7 75 219.6 576.6
GDD Stage 324.7 33.5 213 422.3
Solar heat stage 60.2 6.5 37.7 77.1
Prec. Stage 2 74.5 20.8 26 117.2
KDD Stage 3 11.1 7.1 0.6 27.2
Prec. Stage 4 96 29.4 42.8 177.9
Prec. Stage 4 north 97.3 30.9 42.8 176.3
Prec. Stage 4 south 95.1 28.3 50.4 177.9

Source: Handbook of horticulture J&K Govt. and Dept. of 

Metrology J&K Govt.

The apple yield ratios that have been recorded are therefore 
described in three parts: first the production function 
with the inputs, f(Xjit) in which j shows the inputs, then 
the weather function, and g(Xkit) (each aggregated to 
four phenological sub-periods and counted as different 
variables).

Thirdly, the number of new regulations indexed by s, 
and the yearly impact of policy changes, economic 
shifts, prices and other shocks in common across India 
is isolated. These dummy variables catch other surprises, 
including stochastic national technical shifts that vary 
from linear patterns that are not eliminated by initial 
separation. Econometrically, the annual dummy variables 
are also significant, as typical transversal dependency 
which prevail when such stimulus are not handled.

Our empirical approach is based on a rich data collection 
and we remove possible time-continuous sources of 
confusion by first differentiating by the exploitation of the 
data structure.

The time dummy variable capture simultaneous shifts in 
the input mix, depending on the predicted performance 
fluctuations common to all districts. The preferences are 
captured by the vector land as long as these contribute 
to land adaptations. Marginal feedback results are often 
assessed depending on temperature variations found. 
Therefore, if the temperature observed impacts the yield 
difference, the estimated parameters are accounted for.

However, forecasts of future yield increase in one or more 
federal states may trigger material input adjustments 
including fertilisers in the season. As these questions 
are generally unnoticed, the error term can also be 
misunderstood on some inputs on our models. However, 
since about 25% of the overall farm management costs 
are already incurred after seeding and can be modified 
in accordance with early growth season forecasting, 
we argue that in our circumstances, the magnitude of 
such a concurrent bias lies within a reasonable range. 
Furthermore, in robustness tests we solve this issue by 
evaluating the instrumental variables.
The base function is given by:

Where ἐit denotes the error terms and symbol Δ indicates 
the first-difference. We function in log-difference data as 
a dependent variable and in the first few variations, all 
explanatory variables.

In principle, we evaluate four models with the same 
dependent variable but functional differences between 
f(Xjit) and g(Xkit) and the variables and interactions 
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included. This is the overall premise of basic modelling 
(Greene, 2012), although the following principles keep a 
sensible amount of parameters. 

Next, the two considered functions of output f(Xjit). This 
includes the transcendental (translog), and the quadratic 
functions with the complete range of interactions (AIC). 
We push linear conditions into the model, while the 
weather in phase 1 is left to the mistake.

First, the transcendental (translog) and quadratcliptic 
functions, comprising the whole set of interactions, are 
both termed production functions F(Xjit), and are simplified 
reverse and reverse to minimise Akaike information 
criterion (AIC). We require the model to have linear terms 
whereas in step 1 the weather is left to the wrong term. The 
second thing to be said is that they all are combined with 
possibly optimal weather factors: GDD, precipitation, 
solar radiation, potential Haude evapotranspiration in all 
four phases and KDD in stages 3 and 4. In two variations, 
logs and levels, the weather feature g(Xkit) is provided. 
Thus, there are four possible compounds: weather in logs 
or levels, and weather in logs or levels. The weather is 
quadratic. - The weather variables explain these models 
phenologically. We use a reverse and forward method to 
reduce the AIC in selecting the corresponding weather 
variables in their respective phenological level.

When quadratic factors were considered relevant, weather 
variables in linear terms would be pushed into the model. 
The remaining weather parameters DWP, maximum 
temperature and evapotranspiration are examined and 
only kept by improvement of the AIC.

Third, the four models that arise are generalised in the 
following way. If a model has solely quadrant terms 
and interactions, linear terms are once again introduced. 
Further control variables are checked, as well as a complete 
series of yearly dummy variables. Moreover, we are 
blamed for the valley flood in 2014. Since extreme values, 
especially weather variables, can affect the estimates, we 
communicate with dummy year 2014 for those districts 
that are most affected by the flood.

Fourth, the Davidson-MacKinnon J tests continue to pick 
from these non-test models when all other functional form 
defects (RESET passed) can be omitted. As we did not 
convince these results, we chose the lowest AIC model.

Over all, log level definition, an approach widely used in 
functional econometrics, such as (Wooldridge, 2009) and 
climate effect analysis (Lobell et al., 2011), tends to match 
in with input information. In other words, the returns and 
the atmosphere are logarithmically modelled. Finally, four 
more temperature factors, which are statistically minor, 
are removed at the conclusion of this process. While 
we have put more emphasis on economic efficiency, the 
findings were robust for inclusion.

Eq. (1) with f(.); g(.) and h(.) defined as follows indicating 
the final model, designated as model 1,

All Xjit inputs remain in the final model definition, 
save from services. Capital X1it appears in contact with 
laboratory X2it and seedling X3it, while energy X4it and 
manure X5it seedling appear. The X6it and X7it symbols 
indicate the input material and the apple land. In the spirit 
of a translog production function, seven meteorological 
variables in logarithmic terms enter the model:

X1it: phase 2, X2it: stage 2, X3it: precipitation phase 4, both 
interacting with the south Kashmir variable, X4it: possible 
evapotranspiration phase 1, X5it: stage 2 GDD, X6it: stage 
2, X7it: phase 3 KDD.

The following are the yearly dummy variables X1 through 
X13 for the years 1990-2008. For the districts affected by 
the flood in 2014, the dummy variable flood is set to 1.

Given these interaction terminology, all variables are 
considered in a mean-centric manner except for yields 
and dummy variables, which means that each observation 
is standardised with its respective average sample. The 
table Info allows for the initial removal of unexplained 
heterogeneity effects and then calculation of all models 
using OLS (Greene, 2012).

In the calculation of the effects of materials inputs, 
we employ the instrumental variable (IV) evaluation 
procedure as a robustness assessment, in which the second 
lagging material discrepancy is used as instruments. We 
introduce another model that leaves output variables close 
to address the possibility of omitted variables (Miao et al., 
2016). All Eq.(2) inputs are deleted to describe model 2 
in Eq. (1). We assume that the search for determining the 
same weather variables will have been chosen.

To study the input and weather effects on the volatility 
of yield

Type 1 extends beyond RESET, hence we suppose that 
Type 1 can be linearly separated by parameters. This is 
necessary if the variability of the apple yield in the second 
stage is to decompose in an unequal and uniform manner.
In general, there are two methods to calculating variability 
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in crop yield: absolute or relative. For example, (Chen 
et al., 2004) refer to an absolute metric. These writers 
depend on a reasonable and fair development strategy to 
the weather influences and their comprehensive analysis 
on average yield and variation. However, these models 
have to be dependent variable, where the first difference 
to ensure the stability of our output findings is essential, 
without first differentiation.

Moreover, absolute behaviour is motivated by absolute 
return shifts, which could lead, if optimistic developments 
continue, to apparently greater risk (Finger, 2010). 
Therefore, the weather-induced difference in apple yields 
similar in the region, across the years, is based on relative 
risk indicators. For example, a standard time difference 
between recorded returns may be determined across a 
succession of time return levels, particularly volatility 
(Ray et al., 2015).

In this second stage we extract and analyse the variability 
of weather-defined output, similar to (Osborne and 
Wheeler, 2013). Through incorporating inputs and a 
broader variety of weather variables and reviewing 
others’ geographic datasets, we improve the approach 
of these writers. We distinguish the weather explained 
component of the yield from the stated element from (Ray 
et al., 2015). Furthermore, our calculation of volatility 
specifically applies to the variations in yields caused by 
the atmosphere, although (Ray et al., 2015), in absolute 
words, “explicitly explained the yield variability of the 
atmosphere” measures are not independent.

The weather causes relative changes     to be determined 
as a result of the changes in weather after Eq. The fitted 
initial differences in log outputs in the regression model 
(Eq.(1)) (3). The inputs are assessed on their own (null 
because in a medium form) and other controls are not 
added, such as year-dummy variables:

The fitted series is used for extraction of volatility-induced 
in weather     oscillation for each District, i= 1-------n 
using the standard deviation over      :

with year t = 1; . . . ; T; T = 7 and mean

We split the survey into two sub-periods: 1990-2002 and 
2003-2016 to capture weather-induced risk changes over 
time. We use this method in order to compare the changes 
in weather-related fluctuations and the changes induced 
by the inputs accordingly. We measure variance based 
on fitted values for additional comparisons that allow 
all inputs and weather to adjust without any checks and 

yearly dummy variables.

RESULTS AND DISCUSSION

First we are concerned with the consequences and 
robustness controls of the performance function 
computation and, secondly, we analyse the weather and 
input volatility estimates.

The figures for two models are provided in Table 3. While 
Model 1 corresponds to the whole model, Model 2 focuses 
on the discourse between the excluded variables. There 
are all levels of input. Semi-elasticities can be observed 
then, while meteorological variables are put in logs. The 
Davidson and MacKinnon J-testing and AIC values imply 
that Model 1 is greater than a log-log model.

Production function inputs

Our preference of scalable functionality is based on the 
vast number of statistically relevant terms of interaction. 
Positive linear and negative quadratic effects are evident 
from energy and material supply, but energy only in 
the significant quadratic term. In other words, material 
inputs have a beneficial effect, with marginal productivity 
reduction. A 10% rise (about 90 Rs per hectare) is based 
on the average sample size and results in positive return 
increases of approximately 1.7%. With the non-linear 
relationship, yields will already decline by 1.06 percent 
after a 30 percent (approximately Rs 270) rise.

Seminars have a negative quadratic coefficient between 
linear and positive. This means that a drop in seedling will 
result in increased yields, starting from the mean sample, 
while rises will lead initially to decreases but then rise 
again. This effect may be derived in monetary terms from 
the variable concept. Reducing seedling will increase 
yields, but low seed densities demand almost ideal 
conditions for water supply and other inputs. The negative 
spectrum may be explained by horticultural relationships. 
The late seeding requires a greater seed input per hectare 
to finish the development of a population. In contrast, too 
crowded communities might minimise outputs.

Two virtually fixed inputs, capital and labour, have 
positive linear and quadratic impacts on yield growth rate 
but negative impacts on labour interactions and seedling. 
We notice depressing quadratic expressions for labour 
linearly and positively. In other words, if the sample 
means deviates from labour, the yield rate assessed on the 
medium of samples would be increased. However, these 
figures can be viewed in view of the measurable trend in 
data to decrease the total capital and labour production 
per hectare beginning in 2002. For the disengagement of 
relationships between capital and labour we use capital as 
a moderator, following the concept of clear paths in two-
way encounters.
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We find that a decrease of job supply has an unfavourable 
effect on the changes in yield, while additional labour 
units at a low level of capital contribute certainly to the 
apple yield growth rate. For high levels of capitals  the 
effect of replacement is less visible. Based on the average 
labour level, the positive influence of reducing labour 
input is greater. This means that resource efficiency could 
be increased by reducing labour in high-capital output 
processes.

The impact is negligible for soils planted with apples. 
This could be due to two adverse consequences. Next, 
there is an improvement in return in the land planted with 
apple due to specialisation and scale impact. Secondly, 
in the course of time, more marginal land will be used 
to cultivate fruit, incentivized, for example by increasing 
apple prices.

Moreover, this area may be more vulnerable to weather 
changes and therefore we will expect a detrimental impact 
on apple yields from a greater proportion of marginal soil. 
While the first influence may be particularly significant 
for north Kashmir, for the south part the second effect 
may be more appropriate.

Since 2002, time dummy variable is important; all 
variables are negative. In other words, the apple growth 
rate drops for these years as opposed to shifts between 
1990. This result may be explained by shifts in the relative 
competitiveness of apple. These coefficients may also 
absorb typical yield swings, also likely as a function of 
the weather or other common macroeconomic shocks. 
For example, we cannot recognise the direct effects of 
technological transition, nor disengage the influence of 
CO2, as seen by (Attavanich and McCarl, 2014) on yield 
variability. Due to flutter time and the heat wave, the 
apple growth rates in the respective districts of Kashmir 
State are significantly negatively impacted.

Weather

In the plant’s first early step of growth (sowing / end 
of tillering), major positive impacts are noted from 
precipitation and possible evapotranspiration (ETPTI): a 
10% rise in ETPTI results in a 4.3% increase.

A sufficient water supply improves biomass Farm yield 
capacity assessment, output (Chmielewski and Köhn, 
2000; Roberts et al., 2013) also find that a vapour tension 
deficiency is a beneficial result, a major component of 
the evapotranspiration scale. For the South Kashmir 
nomenclature of linear and quadratic precipitation, known 
for low water soil conditions at phase 1, we discover 
negative coefficient values. In the first step of phenology, 
the prevalent soil situation in South Kashmir may pose 
a problem of nutrient leaching at higher precipitation 
levels. This might hinder future yields. For stage four, the 
adverse effects of precipitation (early ripening/harvesting) 

Table 3 Input and weather effects for relative variability 
in apple output in J&K, 1990-2015

1. Final Specification 2. Drop inputs

Intercept 0.272 (0.0116)*** 0.0543 
(0.0258)***

Inputs

Capital 0.073 
(0.0492)

Labor - 0.514
 (0.193)

Energy 0.123
 (0.0982)

Material inputs 0.091 (.0305)***
Seedling -0.1223 (0.0645)***

Manure -59.540
 (8.946)

Land apple -0.173
 (0.612)*

Capital squared 0.532 (0.0028)***

Labor squared 0.264 
(.0243)*

Energy squared -0.0082 (0.043)***
Material inputs 
squared -0.0151 (.0042)*** 

Seedling 
squared 0.0149 (0.011)***

Capital*labour -0.0375 (0.0016)**
Capital*seed-
ling -0.0089 (0.0032)**

Labor*energy 0.0632 (0.0024)***
Seedling*ma-
nure

7.281 
(0.1897)*

Weather

Prec. Stage 1 0.05
 (0.142)***

0.032
 (0.021)*

Prec. Stage 2* 
north -0.187 (0.214)*** -0.261 (0.0861)**

Prec. Stage 1 
squared*north

-0.87
 (0.432)** -0.65 (0.344)***

Pot. evapotrans-
piration stage 1 0.443 (0.154)*** 0.312 (0.098)**

Growing degree 
days stage 2

0.164 
(0.327)**

0.212 
(0.074)*

Solar radiation 
stage 2 -0.041 (0.002)*** -0.562 (0.073)**

Solar radiation 
stage 2 squared

0.541
 (0.141)** 0.254 (0.312)***

Prec. Stage 2 -0.019 (0.007)*** 0.014 
(0.009)*

Killing degree 
days stage 3 -0.183 (0.032)*** -0.0128 (.003)**

Prec. Stage 4 -0.039 (0.034)** -0.431 (0.042)***
Prec. Stage 
4*north

0.823
 (0.621)**

0.0972 
(0.0615)***
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Prec. Stage 4 
squared*north

0.424
 (0.78)*** 0.621 (0.101)**

Controls
Year 2002 -0.833 (0.001)** -0.754 (0.004)***
Flood 2014 -0.089 (0.011)*** -0.417 (0.014)*
R2 0.83 0.74  
Adj. R2 0.77 0.69

Note: Dependent variable: first logged apple yield 
disparities. Logs are weather, levels are input. Coefficients/
standard deviations multiplied by 100 for inputs. First 
differentiated explanatory variables; mean focused on 
weather/inputs. Robust standard errors in spatial and 
serial correlation ( ) Point: potential; prec.: rainfall.
*p < 0.1
**p < 0.05.
***p < 0.01.

are predicted to result in additional water shortages in 
later ripening crops. Since early maturation is part of the 
fourth cycle, in which the water shortage is very likely to 
increase yields in north Kashmir relative to other areas.

We find negative effects of precipitation and positive 
effects for GDD for the second stage. In other words, 
lower temperatures have a positive impact on apple 
growth and therefore on output. Solar radiation has a 
positive non-linear effect due to improved photosynthesis 
(Roberts et al., 2013). However, a growing supply of 
water in this developmental stage is hindering progress, as 
the negative coefficient suggests. This finding shows that 
average water supply is almost optimal. In the third stage 
(heading/early maturation), we see major temperature 
impacts: DDK has a detrimental influence on production 
in compliance with current studies (Roberts et al., 
2013). However, these results remain limited: from the 
mean sample, an improvement in KDD by one standard 
deviation will result in a 1.8 percent yield loss. Despite 
taking into account regional KDD, the heat wave for the 
Jammu region has another important impact. Our findings 
show the significance of spatial-temporal distribution 
and its reliance on soil conditions, along with the various 
effects of precipitation in North and South Kashmir during 
two phenologic phases.

In short, all weather consequences can be derived 
and are consistent with earlier agronomic-theoretical 
explanations. The sophistication of yield formation 
reflects our component collection and phenological data 
aggregation.

Decomposing apple yield volatility

In order to answer the problem of the shift across areas 
and over time and to determine its causes, we dissect the 
standard deviation of the apple growth rates.

The inputs clarify about 49% of the overall real apple 
yield fluctuations, over time and regions; while weather 
accounts for 43%. The volatility of apple yield rises as real 
volatilities are compared over time for sub-periods. The 
north portion of Kashmir is at risk in terms of temperature 
and inputs.

We use state-level provincial aggregated returns. 
Spatially uncorrelated risks are unlike company-level 
statistics, which mean that unusual ‘self-diversifying’ 
shocks, although there are more structural variations in 
their overall range (Woodard and Garcia, 2008; Marra 
and Schurle, 1994) Therefore, State-level weather driven 
uncertainty can be seen in terms of structural weather 
risk measurement in horticultural development (Xu 
et al., 2010). The instability caused by weather varies 
marginally by area in the north part with increased 
volatility. In comparison with the volatility generated 
by input modifications, we see higher input-induced 
volatility in comparison to the volatility traced to weather 
shift in the entire north area and in some south sections. 
Over time, the real uncertainty is rising, on average. This 
can only be due to mutual temperature and input increases 
in some areas. Whilst increases in fluctuations caused by 
temperature and feedback in other regions display opposite 
signals. Nevertheless, the rise in real fluctuations cannot 
be attributed solely to changes in weather and input. For 
the first time in comparison with the second cycle, we 
see an increased share of explained real fluctuations. 
However, it is clarified that nearly 76 percent of the real 
variance was 25 percent between 2002 and 2014. Input 
and weather from 1996-2002 accounted for 72% of real 
fluctuations in all continents. This finding will be partially 
accountable by the inclusion of time stupid variables in 
regression models, segregated from volatility input and 
meteorology, but of particular importance to the second 
cycle. We therefore possibly underestimate the weather 
influence, as ordinary time dummy variables grab typical 
weather shocks. We also explored whether the multiple 
geographical areas in the districts impact the findings in 
order to ensure robustness, but we do not. At state level, 
weather induced variance remains very low as the shifts 
due to weather conditions are assumed to be higher. In 
other words, we believe that our model cannot only trace 
systematic danger to weather (regional temperature, 
solar radiation, precipitation and evapotranspiration) 
also macro level typical shocks are important. The above 
involve severe weather conditions, but also improvements 
in policies and price, as well as input modifications for 
several farms. The substantial yearly dumb variables after 
2002 capture macroeconomic and policy shifts precisely. 
But above all, in contrast to the entire model, the unexplained 
component is bigger. Therefore, the explanation of the 
traditional shocks would be too much attention. This will 
overestimate the systemic macro danger. However, input 
adaptations, which are just fair adaptations by producers, 
are not at the same time addressed at all as future effects 

Continue...
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of cost and policy shocks.

CONCLUSION

We see all inputs and weather shifts in relative yields in line 
with output economy. The instability of the decomposition 
of apple returns exposes weather-induced instabilities 
at regional levels. If the study is divided into two sub-
periods, there is actual uncertainty over time when macro 
level disruptions such as serious weather lead. In other 
places, however, only those rises are attributed to the 
weather-induced part and the part impacted by changes 
in the input mix. In many locations, weather variance 
decreases with time as well.

The seasonal forecasting of weather-related likely crop 
shortages could increase given the phenological weakness 
of yield at the regional level. Better understanding of the 
likelihood of returns will also allow growers to change 
their orchard management to better deal with the risk of 
downturns.

Apple-yield susceptibility may also be of benefit to the 
design of insurance and model of weather conditions risk at 
the area phenological level. When our methodology breaks 
down climate and input effects on apple productivity and 
averages dense shocks, it may be helpful for insurers to 
boost the assessment of insurance claims. For insurance, 
only weather induced damages can be compensated. In 
addition, a more economical accounting of weather losses 
will increase the systemic risk of insurance undertakings. 
The insurer and the insured will benefit from this.

Appendix

A.1. Weather Variable Choices

The selection of weather variables, summation levels 
of weather data and the functional form expressing the 
input-output and the weather-yield connections are three 
decisions crucial for adding weather into the production 
function.

The bulk of the weather variables use temperature and 
precipitation, however slightly, as well as radiation and 
evapotranspiration. Soil moisture capture variables are 
not often used since this often needs spatially precise data 
(Bakker et al., 2005). Recent research highlight VPD as a 
significant yield-determining variable (Lobell et al., 2014; 
Roberts et al., 2013). However, VPD does not cover the 
water holding capacity of the soil and, in circumstances 
when water supply is sufficient, might thus imply dry 
conditions. In the literature we examined its minor 
difference across time and space, but it was not possible 
to quantify the effects of atmospheric CO2 concentration 
in econometric models (Finger and Schmid, 2008) except 
with rare exceptions (Blanc, 2012). 

As aggregate data at multiple phenological phases 
indicate, agronomic knowledge increases evidence of 
weater impacts on yield/variability, albeit data needs 
are considerable (Dixon et al., 1994). In order to study 
adaptation opportunities on farms, for example, (Butler 
and Huybers, 2015) or (Ortiz-Bobea and Just, 2013) 
incorporates phenological phases while examining the 
influence of the weather on the maize output.

While these studies emphasize temporal aggregation, 
spatial aggregation has been analyzed in greater detail by 
(Garcia et al., 1987).

A continuous study area, in particular in production 
literature, is to find the correct functional form representing 
the input/output connection (Coelli et al., 2005, Griffin et 
al., 1987). A proper functional form is in fact vital, because 
faults because of the malformation of the functional form 
are of the same magnitude as the neglected variable faults. 
Usually used functional forms are Cobb-Douglas, linear 
or quadratic with linear weather additives. Other forms 
are rarely taken into consideration, especially those which 
account for non-linear weather influences; (Odening et al., 
2007; Schlenker and Roberts, 2009; Lobell et al., 2014).

A.2. Explanation Of Terms

Days without precipitation (DWP)

with PRECd denoting the daily precipitation level and 
subscript d denoting a day within a phenological period p 
as defined in the paper.

Growing degree days (GDD)

Tempmin = 40C. All temperatures refer to the daily average 
temperature (Tempavg;d).

Killing degree days (KDD)

 

The Haude potential evapotranspiration (ETPH) was 
computed using the vapour pressure deficit product (VPD) 
and the Haude factor fH, the empirical correction factor 
(Haude, 1955). For the fH, we utilised the wheat factors 
(Schrodter, 1985). VPDd was calculated using the Magnus 
formula (Sonntag, 1990) with the maximum (Tempmax,d) 
and the minimum temperature (Tempmin,d) instead of the 
dew point temperature (Castellvi et al., 1996; 1997).

Temperature normalized solar radiation: Similar as 
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Gornott and Wechsung (2016, p. 92).
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