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Concerns around food security have emerged in recent years, with rising food demand and the options to meet. The FAO 
projections indicate that global food demand may increase by 70 percent by 2050, with much of the projected increase in 
demand for major food crops expectedly coming from soaring population and their dietary changes.Moreover, various abiotic 
stresses accentuated with changing climate has jeopardized the crop production scenario. Ensuring secured food production 
in the face of climate change is a formidable challenge. Furthermore, in the post-green revolution period, practice of intensive 
cultivationand extravagant usage of high analysis fertilizers to over-responsive high yielding cultivars have caused havoc 
micronutrient mining from the soil itself and thus backfired on sustainable food production. In addition to micronutrients, 
certain beneficial elements are found to be very useful withbetter plant physiology led crop production and nutritive value of 
the consumables. These elements are collectively referred to as beneficial-trace elements and play a stellar role in moderating 
various abiotic stresses. Therefore, the application of beneficial-trace elementsas soil and foliar application is needed to be 
focusedon toassure quality food production through ensuring their effects on crop physiology.
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INTRODUCTION

In the age of climate change, major crop yields are projected 
to drop by 17 percent globally in 2050 (Alexandratos and 
Bruinsma, 2012). Yet according to the FAO, agriculture 
must provide for a 50 percent rise in food production by 
2050 due to population enlargement and dietary changes 
(FAO, 2020).Population trends project India to emerge 
as the most populous country in the world in the coming 
decades. The total cereal demand in 2026 is projected 
to be 273.5 mt. During the same period, demand for 
rice, wheat and pulses is expected to be 102.1 mt, 65.9 
mt and 57.7 mt, respectively (Mittal, 2008).Changing 
climate poses an additional threat to India’s long-term 
food security challenges as it affects food production in 
many ways. Almost 690 millionglobal populations were 
undernourished (or  hungry) in 2019, up by 10 million 
from 2018 (“Number of undernourished people declines 
in India; obesity in adults on the rise: UN | International”, 
2020). In the coming decades, the unavoidable outcomes of 
changing climate such as seasonal drought, eratic weather 
with soaring atmospheric temperature, soils witnessing 
decreasing carbon and declining plant resilience etcwill 
make the huge yield gap and malnutrition problem more 
pronounced. Furthermore, in the post green revolution 
period, extravagant usage of high analysis fertilizers to 
over-responsive high yielding crop cultivars and multiple 
cropping system caused more micronutrient removal from 
soil. Farmers’ lack of awreness and inclination to incur less 

cost in manures and trace nutrients also acted as dampener 
to the soil fertility. On the other hand, though, beneficial 
elements were not remarkably deficientin soil, the effect of 
them at low levels should also be considered with regard 
to applying them to crops for boosting production under 
various stresses, also for enhancing plant nutritional value 
as a feed or food (Kaur et al., 2015). Therefore, strategic 
and scheduled promotion of benefial-trace elements as 
holistic soil and/orfoliar application in plant assumes 
more importance to ensure food and nutritional security 
through better crop physiology, productivity, and nutrient 
content. 

The recent effects of changing climate are severely 
hampering the physiology of different crops by inducing 
various abiotic stresses viz. drought, salinity, heat 
stress and inadequate or non-availability of beneficial-
trace elements and interfering in various important 
enzyme activities needed for the steady performance of 
plant metabolism. For example, the central enzyme of 
photosynthesis, Rubisco, is disrupted if the temperature 
increases from 35◦C, and stops the photosynthetic 
process (Griffin et al., 2004).Drought along with heat 
stress reduces the grain number per spike in cereals 
(Stratonovitch and Semenov, 2015). Salinity stress also 
affected yield components like number of spikelets, spike 
length, fertility rates in the spikes, test weight and yield 
(Gholizadeh et al., 2014; Mishra et al., 2014). In legumes 
drought stress affects fertilization, gametogenesis, 
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embryogenesis, grain formation and yield (Farooq et 
al., 2014).Flowering and reproductive phases are highly 
vulnerable to water scarcity during plant life cycle (Fang 
et al., 2010), leading to pollen grain sterility by reduced 
pollen tubes and pollen grain germination  (Phillips et 
al., 2018).Black gram (Vignamungo L.) yield has been 
reduced by drought stress from 31% to 57% during the 
flowering stage and 26% during the reproductive phase 
(Baroowa and Gogoi, 2014). Maleki et al., (2013) 
reported a 42% reduction in soyabean yield by impeded 
grain filling under drought stress. These effects of various 
stresses amplified by changing climate are naturally being 
expected to cut down the final yield of various staple food 
crops. By 2030, rice and wheat are likely to show about 
6-10 per cent decrease in yields ([Internet], 2020).

Emerging deficiencies of benefical-trace elements and 
its importance

In total there are 18 essential elements needed for plant 
growth. However it is challenging to mention an exact 
number of plant micronutrients,since some elements 
have not been strictly proposed yet either as essential or 
beneficial. But they have a ubiquitous presence in both 
soil and water and can be widely taken up and used by 
plants (Kaur et al., 2015). They also may enhance biomass 
and yield but may not be required for species to survive, 
are termed functional/beneficial elements (Marschner, 
2012). Regarding the essentiality and/or beneficial effects 
of the micronutrients in plants, total 13 Beneficial-Trace 
elements including micronutrients are listed as useful for 
plant growth. These are Fe, Mn, Cu, Zn, B, Mo, Cl, Ni, Si, 
Se, Co, Al, and Na (Vatansever et al., 2016).

Nutrient induced unsustainability of crop productivity are 
a result of  imbalanced nutrient  application, widespread 
deficiency of secondary and micronutrients: S, Zn, Fe, 
Mn, Cu, B. There is also a decline in response per unit of 
major unit nutrient applied owing to these deficiencies. 
Increased deficiency of trace elements in soilis indirectly 
affecting animal and human health along with plant 
nutrition.  Deficiency of Zn, Cu, Bo, Mn and Fe has been 
noticed in 49, 4, 33, 5 and 12% soils of India respectively. 
Zn deficiency in soil is further expected to leap up from 
49% to 63% by the year of 2025 (Singh et al., 2009). 
Intensive cropping of high yielding varieties of rice and 
wheat induced deficiency of Zn initially followed by 
subsequently deficiencies of Fe in rice, and Mn in wheat 
(Singh, 2008). B, Fe, Mo and Cu deficiencies are also 
common in cereals (Kihara et al., 2020). Iron Chlorosis 
is a conspicuous problem in Bengal gram, Sorghum 
and Groundnut (Singh, 2008). Deficiency ofbeneficial 
elements of Co and Si in rice soils has already been 
projected. A considerable deficiency of Se is predicted in 
major cereals i.e Upland- Rice, Wheat and Maize (Reis et 
al., 2020). Supplementation of these elements are needed 
to improve the physiology of crop plants and productivity. 

Role of Beneficial elements in improving crop 
production and nutrition

It is important to understand the roles of beneficial 
elements which actually trigger the activity of different 
antioxidant enzymes and act as stress regulator to combat 
various stresses induced by changing climate. The 
addition of the specific nutrients can positively moderate 
the uptake of other micronutrients also in improving 
the overall nutritional status of the crop. Apart from 
enhancing crop nutritional quality, trace elements, when 
efficiently translocated to seeds, also enhance seed vitality 
that allows good seed emergence and vigorous seedling 
growth (Nestel et al., 2006; Velu et al., 2014).

Selenium

Selenium helps to ameliorate various stress injuries in 
plants induced by cold, drought, high temperature, water, 
salinity, heavy metals, UV-B rays, and desiccation. It 
protects plants against abiotic stresses by regulating the 
uptake and redistribution of elements essential in the 
antioxidative system and interfering with the electron 
transport complex (ETC) of the photosynthetic system 
(Kaur et al., 2014). Both foliar and soil application of 
Se increased Se content in the edible crops by redressing 
injuries from four different abiotic stresses (Pezzarossa 
et al., 2012). Protective role of Selenium during high-
temperature stress has been reported by foliar spray of Se at 
100 mg L−1 and seed treatment at 5 mg L−1 in Soyabeanwith 
decreased membrane damage and reactive oxygen species 
(ROS) content through increased antioxidant enzyme 
activity (Djanaguiraman et al., 2004). At a low level of 
concentration, Se imparts diverse beneficial effects (Yassen 
et al., 2011) and stimulates growth as well (Malik et al., 
2012;Han et al., 2013). Se-enriched fertilizers reportedly 
increased grain Se concentrations (in maize and wheat). In 
Finland, nationwide addition of Se to NPK fertilizers (15 
mg Se/kg) increased cereal crop Se contents by 15-fold 
on average increasing Se intake of the population to well 
above nutrition recommendations (Alfthan et al., 2015). 
Other authors observed linear relationships between Se 
fertilization and maize grain Se concentrations (Chilimba 
et al., 2012).

Silicon

Plant growth, development and reproduction are 
significantly affected by deficiency of Silicon which has 
also been classified as a ‘quasi essential’ element like 
Selenium (Epstein and Bloom, 2005) and it reportedly 
minimizes various stresses in changing climate scenario. 
According to Marschner (2012), Si4+ is deposited under 
cuticle epidermal cells of leaves which make leaves more 
erect improving their exposure to light and mitigates water 
scarcity by lowering the transpiration rate; it increases cell 
elongation in roots enhancing cell wall elasticity. Malavet 
al., (2015) reported significant increment of plant height, 
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yield components and yield and straw yield in rice applied 
with Silicon fertilizers. Ahmed et al., 2015 observed 33% 
wheat yield scale up with silicon. Shedeed et al., (2016) 
reported that foliar application of Si improved yield of 
flax. Maximum silicon uptake at three leaf stage, (0.028 
µg g-1 dry weight (DW), anthesis (0.072 µg g-1 DW) 
and maturity (0.103 µg g-1 DW) were recorded for 
silica gel application in wheat. Silicon uptake increased 
significantly in response to increase in Si concentration 
from in rice Malav et al., (2015).

Cobalt

Cobalt is an essential component of cobalamine, which 
is needed for activities of several enzymes in nitrogen 
fixation by rhizobia bacteria and cyanobacteria that live 
in root nodules of leguminous plants. The essentiality 
of Co2+ is required as a constituent of vitamin B12 into 
methyl and adenosyl vitamin B12, which function 
as coenzymes. In higher plants, Co2+ plays a major 
physiological role, i.e. nitrogen fixation by leguminous 
crops. The supplementation of 8 mg cobalt to groundnut 
(Arachishypogaea L.) plants are found showing significant 
increment in nitrogenase activity and subsequently 
enhanced growth and yield, leading to improved quality 
of pods and oil yield (Gad, 2012). In pea (Pisumsativum 
L.), cobalt application to the soil increased growth, plant 
nutrient levels, nodule numbers and weight, and seed pod 
yield and quality (Gad, 2006). 

Sodium

Some aquatic halophytes use Na+ to facilitate nitrate 
uptake via Na/NO3 co-transporters. Xi et al., (2018) on 
xerophyte  Z. xanthoxylum  under drought conditions 
revealed that Na+ can significantly increase the survivability 
of this plant. These physiological drought adaptations are 
likely result of high concentrations of Na+  distributed 
in leaves that act to lower leaf osmotic potential, swell 
leaf organs and decrease stomatal aperture size, enabling 
enhanced water uptake, storage and reducing water losses. 

Role of Trace elements in improving crop production 
and nutrition

Iron

There are estimates that 30% of world’s cultivated soil 
is iron sick (Cakmak, 2002). Plants and humans cannot 
easily acquire iron from their nutrient sources although 
it is abundant in nature and also an integral part of plant 
food and human diet. Low solubility of iron in aerated 
soils at neutral or alkaline pH has been recognized as a 
common yield-limiting factor in agriculture, which is 
difficult to correct due to the high costs and low efficiency 
of iron fertilizers. Iron plays an irreplaceable role in 
easing stress induced by salinity, drought, and heavy 
metals by activating plant enzymatic antioxidants like 

catalase (CAT), peroxidase, and an isoform of superoxide 
dismutase (SOD) who all act as scavengers of reactive 
oxygen species (ROS) (Hellín et al., 1995).Sharma et al., 
(2012) and Ghasemi et al., (2014) reported ameliorative 
effect of Fe against salinity by producing antioxidative 
enzymes. Application of iron improved salt tolerance 
to sunflower and maize (Ebrahimian et al., 2010). Iron 
acts an electron carrier facilitating respiration and 
photosynthesis. Fe helps in photosynthesis, nitrate and 
sulfate reduction, and nitrogen assimilation playing stellar 
role in the redox system.

Foliar sprays of ferrous sulfate or chelates were found 
highly effective in correcting Fe chlorosis in wheat. 
Majeed et al., (2020)reported split application of Fe at 
15 kg ha-1 enhancing yield, economic returns, grain-Fe 
concentration and bioavailability of Fe in mungbean. 
Iron-humic complexes provide a readily available iron 
form in the soil and directly impact physiological and 
developmental programs (Schmidt et al., 2019). Iron 
in combination with molybdenum helps the plant to fix 
atmospheric nitrogen (Malvi, 2011), and results in greater 
yield in wheat (Abbas et al., 2009) and Rice (Ram et 
al., 2013). Iron fertilization has been found useful in 
increasing the concentration of iron in rice grain (Jin et al., 
2008). Application of Fe-EDTA @ 0.5 Kg ha-1 recorded 
significantly higher Fe content in grain as compared to 
other micronutrient treatments in Rice (Ram et al., 2013).

Zinc

Membrane permeability, activity of antioxidant substances, 
photosynthetic efficiency and water use efficiency are the 
indicating attributes of drought stress that are positively 
influenced by adequate Zn supply (Karam et al., 2007). 
Defensive antioxidant activity of plant system contains 
various enzymes protecting plants from the reactive 
oxygen species(ROS) under drought stress (Reddy et al., 
2004). SOD contains Cu/Zn-SOD, Mn SOD and Fe-SOD, 
which constitute the first protective systems against O2

−, 
and converts it into H2O2 and O2 (Gratao et al., 2008). 
Zn increases the activities of superoxide dismutase 
(SOD), Catalase (CAT) and Ascorbate peroxidase (APX) 
enzymes in drought stressed Cotton and Rice (See table 
no. 1). Higher germination and yield of maize, wheat 
and chickpea have been reported with application of Zn 
through seed priming (Harris et al., 2007). Under drought 
conditions, seed priming with Zn hastens synthesis of 
IAA and GA3 and augments plumule length and weight 
(Cakmak, 2008). Zn application resulted in appreciable 
increase in leaf area, the content of chlorophyll and other 
photosynthetic pigments, and stomatal conductance, thus 
resulting in improved growth and yield (Karim et al., 
2012). Hera et al., (2018) revealed that foliar applied 
Zn diminished the negative impacts of water deficit and 
increased growth and yield of wheat. Fe concentration also 
can be increased with soil Zn application in moist soil (Mao 
et al., 2016). A review of experiments from ten African 
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countries on the impact of Zn-enriched fertilizers showed 
that soil Zn application increased the Zn concentration in 
maize, rice and wheat grains by respectively 23%, 7% and 
19% and by 30%, 25% and 63% through foliar application 
(Joy et al., 2015b). Soil application of Zn-EDTA @ 1 Kg 
ha-1 recorded significantly higher Zn content in rice grain 
(Ram et al., 2013).

Boron

Boron is involved in protein and enzymatic functioning of 
the cell membrane, leading to improved membrane integrity 
(Brown et al., 2002). Optimum Boron concentration 
enhances the plasma membrane hyperpolarization, while 
its deficiency alters the membrane potential and reduces 
H+-ATPase activity (Goldbach and Wimmer, 2007), also 
activates enzymatic and nonenzymatic oxidation by 
using phenol as substrate, resulting in elevated level of 
hazardous polyphenol oxidase and quinine concentrations 
(Hajiboland et al., 2013). Boron deficiency may trigger 
reactive oxygen species generation which drastically 
reduces ascorbic acid and glutathione metabolism 
(Marschner, 2012). In fine grain Basmati rice improved 
leaf elongation, tillering, leaf chlorophyll contents and 

water relations were reported with foliage applied Boron 
associated with decline in panicle sterility (Rehman et 
al., 2014). Jabeen and Ahmad (2011) reported enhanced 
growth and yield of Sunflower due to application of Boron 
along with Manganese. Phonglosa et al., (2018) found 
the effect of Boron nutriment on growth parameters and 
yield attributes of rice (var. Mandakini) resulting highest 
rice (var. Mandakini) grain yield of 4.30 t/ha  in the plots 
enjoying combined application of Boron in soil with NPK 
and as foliar spray at 45 days after transplanting.

Manganese

It is widely believed that the reduction in photosynthesis 
is the major reason behind the decline in dry matter 
production and yield under Mn-deficient conditions. Mn 
in plant system naturally catalyzes activity of Mn-SOD 
contributing greatly to plant tolerance against different 
abiotic stress factors such as winter hardiness, ozone 
stress, salinity and drought stress. Deposition of wax 
layer on leaves also improve drought tolerance in plants. 
The wax layer limits the non-stomatal water loss and 
reduces the heat load on leaves (Hebbern et al., 2009). 
In barley, latent Mn deficiency was found to significantly 

Beneficial/trace 
element

Concentrations Synergistic effect Antagonistic effect Crop References

Selenium 5 µmol⋅dm-3 P - Maize Hawrylak-Nowak, 
2008

25 µmol⋅ dm-3 K -

50 µmol⋅ dm-3 P, Ca -

100 µmol⋅ dm-3 P, Ca K
2 ml L-1 Fe, Ca, Na K, Zn Strawberry Narváez-Ortiz et al., 

2018
4 ml L-1 Na, Cu, Mn K, Ca, Mn and Zn

Selenium - Mo, S K, Mn, P Lettuce Silva et al., 2018

Selenate

Selenite - Mn Mo
Selenate Up to 20 µM Fe, Mn - Lettuce Rios et al., 2013
Selenite Up to 80 µM Fe Mn
Selenate Up to 120 µM - Cu
Selenite Up to 60 µM Cu -

Both
(Selenate and 

Selenite)

Up to 120 µM B

Silicon 20 mg L−1 As, P, Fe - Rice Agostinho et al., 2017
40 mg L−1 P As, Fe
80 mg L−1 As, Fe P

Cobalt - - Zn Pea, wheat Babalakova et al. 
1986; Chaudhury & 

Loneragan, 1972; Palit 
et al., 1994

Table 2: Interaction of Beneficial elements with macro and micronutrients
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reduce the wax content (up to 40%), resulting in increased 
transpirational water loss and lower water-use-efficiency 
. Mn deficiency can weaken this wax layer and thus the 
susceptibility of crops to both drought and heat stress 
can be increased. (Hebbern et al., 2009). Manganese 
plays an important role in stress defense mechanism of 
plant mainly contributing to functionalizing of SOD 
enzyme, which is responsible for the detoxification of 
the destructive free radicals. It functions as an essential 
cofactor for the oxygen-evolving complex (OEC) of the 
photosynthetic machinery, catalyzing the water-splitting 
reaction in photosystem II (PSII) (Alejandro et al., 2020).
The yield responses of wheat, rice, potato and sorghum to 
Mn fertilisation in a large number of experiments varied 
between 2–226% for wheat, 4–98% for rice, 8.5–17% for 
sorghum, 4–15.6% for potato and 2.5–86% for soybean 
(Singh, 2001c). 

Interaction of Beneficial elements with macro and 
micronutrients

There are plenty of literature regarding interaction of 
micronutrients with themselves and other nutrients. But 
the same informations regarding beneficial elements 
are still lacking. Se, Si, and Co related informations 
are found and presented here. Interactions of other 
beneficial elements with major and minor nutrients also 
must be explored and reckoned in taking up advosories 
and prescription for sustainable crop production. Cited 
literature evidence that the antagonistic and synergistic 
interactions among and between elements are specific to 
concentrations of judicious use, mollecular forms,  and 
in plant parts of respective crops. While selenium shows 
synergy with potassium and calcium, concentartion of 
the same beyond 100 µmol.dm-3 is antagonistic to K for 
maize (Hawrylak-Nowak, 2008). Again Selenum enjoys 
synergistic interaction with iron calcium and sodium in 
strawberry with antagonistic interaction with potassium 
and zinc in strawberry when applied @ 2 ml L-1. When 
applied at higher concentration the behaviour is different 
and exhibits antagonism to a other set of nutients (See 
table no. 2). Silicon profoundly influences rice at various 
concentrations and has registered positive effect with iron 
and and phosphorus  and both synergies and antagonism 
with heavy metal Arsenic ( Agostinho et al., 2017).

CONCLUSION

Beneficial-trace elements are contributory to combat 
low productivity owing to climate change and adverse 
physiological responses in crop plants. The positive 
effects of these elements on plants include improved 
yield and postharvest quality, absorption of other 
nutrientsor tolerance to abiotic stress factors such as 
heavy metals, drought, and salinity. The beneficial effects 
of these elements have been shown to be associated when 
administered in foliar applications, low quantities and 
concentrations. It can be further observed that adequate 

intracellular concentrations of beneficial metal ions (in 
traces) are  required for optimal growth and development 
of plants. More research is welcome to understand the 
dose of application which makes them toxic to plants, the 
efficacy of the chemical forms and phenological stages 
of application which unfolds their contribution better to 
make them more cost effective. In this era of research, 
the effects of beneficial elements at low levels and 
their interactions with the other nutrients deserve more 
awareness by developmental programs in order to fertilize 
crops with these nutrients to boost crop production under 
stressed environments as well as enhance plant nutritional 
value as food or feed.
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