

ABSTRACT

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no2.125

FLORISTIC DIVERSITY OF ANGIOSPERMS IN AQUATIC AND MARSHY HABITATS WITHIN FLOODPLAIN AND RESIDUAL RELIEVES OF RANIPUR WILD LIFE SANCTUARY, U.P., INDIA

R.B. Yadav^{1*}, Ajay Kumar², S.K. Verma ³and Lal Ji Singh⁴

 ^{1,3}Department of Botany, Janta Mahavidyalaya Ajitmal, Auraiya-206121, U.P., India
²Department of Genetics & Plant Breeding, Janta Mahavidyalaya, Ajitmal, Auraiya-206121, U.P., India
⁴Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman and Nicobar Islands, India
*Author for correspondence: rbyadavjmv@gmail.com

(Date of Receiving : 09-07-2021; Date of Acceptance : 14-09-2021)

The Ranipur Wildlife Sanctuary located in the Chitrakoot district of Uttar Pradesh in the Northern India, with diverse wildlife. Factors such as terrain of foothills of the lower Vindhyan mountain range, forest cover, flood pulse and altitude must be considered for better understanding of diversity of this area. The dense forest cover, a network of water streams, river and river-lets, natural kunds and check dams have creating a perfect aquatic and marshy habitat. The present study aiming to assess and analyzes the floristic composition of the aquatic and marshy habitats. We recorded 112 species in 41 families, mostly annual (68.75%), annual/perennial (19.64%) and plurennial (11.61%). The most dominant family was Cyperaceae (26 species) followed by Poaceae (11 species). The most dominant genus is *Cyperus* with 13 species. The studied areas showed low floristic similarity, but higher resemblance of species between neighboring areas, and no relation with altitude.

Key words: Diversity, floodplain, floristics, sanctuary, vegetation, wild life.

INTRODUCTION

Marshy habitatform a transition between the aquatic and terrestrial ecosystems mostly found at the edges of lakes and streams with a complex floristic composition. The Marshy habitatplants represent a diversified set of species with differential adaptations and ecological strategies for maintenance of diversity, allowing them to survive in waterlogged or flooded conditions. The set of various factors directly influence characteristics of each species, such as propagation, reproduction, germination, and competition, which may increase the species diversity over short distances (Capon and Brock, 2006 and Brock, 2011). Flood pulse is one of the most significant factors in wetlands which may occur in a periodicaland irregular hydrological cycle. It can often be lead to changes in structure and species composition over a geographical gradient throughout the world (Kozlowski et al., 1991; Muencher, 1994; Cronk and Fennessy, 2001; Cattanio et al., 2002 and Diniz-Filho et al., 2012).

The Ranipur area was one of the Forest and Game Reserves of Colonial India and remained for a long time after the independence. The Ranipur reserve was notified as the Ranipur Wildlife Sanctuary in 1977 by the Government of

Uttar Pradesh and is administrated by Environment, Forest and Climate Change Department. This Wildlife Sanctuary has a network of small streams and river-lets thus creating a perfect habitat for different kinds of vegetation along with birds, large and small mammal and reptiles. In India, the floristic diversity of aquatic and marshy habitats has been explored and recorded time to time by various workers from various regions (Hooker, 1872-1897; Duthie, 1903-1929; Biswas and Calder, 1937; Raizada, 1976; Cook, 1996; Subramanyam, 1962; Gopal, 1990; Singh and Ranjan, 2021). With special reference to vegetation in aquatic and marshy habitats of various part of Uttar Pradesh have been documented by various workers (Bhattacharyya and Malhotra, 1964;Sahai and Singh, 1968; Singh and Singh, 1972, 1991; Maheshwari and Tomar, 1983; Srivastava et al., 1987; Sinha et al., 1990; Sharma and Dhakre, 1993; Ranjan, 1996; Sinha and Dixit, 2000; Singh, 2006; Maliya, 2006; Narain and Singh, 2008; Narain and Mishra, 2008; Ansariand Tiwari, 2014; Yadav et al., 2021). Uttar Pradesh is one of the largest states of Gangetic Plain and comprises a complex of ecosystems of aquatic and marshy habitats forming a mosaic with high species diversity that increases the spatial variability of their occurrence. In this context, considering that the factors influences characteristics of each species has

been the less studied the floristic composition of the aquatic and marshy habitats of Ranipur Wildlife Sanctuary. Our aim was to perform a floristic survey in this Wildlife Sanctuary to evaluate and compare both species composition and richness. Ansari and Tiwari (2014) studied the floristic composition of this wild life sanctuary and stated that the habitats of this Sanctuary comprise a complex of ecosystems forming high species diversity. The area of floodplain and residual relieves of this sanctuary have not explored systematically so far. However, the pattern of hydrological cycle of floods effects the composition of diversified set of species with differential adaptations and ecological strategies for maintenance of diversity (Kozlowski et al., 1991; Cronk and Fennessy, 2001; Cattanio et al., 2002; Ferreira and Parolin, 2007; Costa et al., 2009 and Sanches et al., 2013). In this context, our purpose was to consider the factors influencing characteristics of each species, and to perform a floristic survey in this Wildlife Sanctuary to evaluate and compare both composition and richness of species in the areas of floodplain and residual relieves.

The aquatic and marshy plants of Raipur wild life sanctuary have not explored systematically so far. However, Ranipur Wild Life sanctuary is rich in aquatic and hydrophytic vegetation. Common habitats of hydrophytes are manmade check dams, natural kunds, ponds, streams, ditches, rivers and low lying areas which remain submerged for many months of the year which are integral and important component in food and water security for wild flora and fauna.

MATERIALS AND METHODS

Study Sites

Ranipur wild life sanctuary is located in the Chitrakoot district of Uttar Pradesh. It is geographically situated between 24°53" to 25°02" N latitude and 80°48" to 81°14" E longitude in the Vindhyan hills and plain. The sanctuary is spread over an area of 230 sq km and provide ideal habitat for several rare and endangered flora and fauna. It is not well connected by rail and road because of undulating terrain and dense forest. Nearest railway station is Manikpur junction, 120 km away from Prayagraj, on the Howrah-Mumbai rail route. Southern boundary of the sanctuary touches the state of Madhya Pradesh. Climatic condition shows much variation in different seasons of the year. Temperature falls to 3-4[°]C during the winter season and maximum temperature reaches up to 49[°]C during hot summer days. Soil of this area is sandy red and yellow in colour, maximum rainfall occur during the July to September by Southwestern monsoon and scanty rainfall occurs in winter season. The ever flowing rivers like Amha, Bardaha and Jamunhai drain, Lakhanpur drain, Kulludol drain, Vedhak Jaldhara, Panna kund are main natural source of water. Some man made check dams in the rivers make round the year availability of water in the different part of the sanctuary. Sanctuary is rich in aquatic hydrophytic vegetation. Common habitats and of hydrophytes are manmade check dams, natural kunds, ponds, streams, ditches, rivers and low lying areas which remain submerged for many months of the year and support luxurious growth of aquatic flora and fauna.

Data Sampling and Methods

The study was carried out in six areas *viz*. Check Dam of Amha River (CDAR), Check Dam of Bardaha River

(CDBR), Sakrauha Pond (SP), Chaupata Foothill Dam (CFD), Unchadih Dam Water Stream (UDWS) and Panna Kund (PK) of Ranipur Wild Life Sanctuary are given in Table1.To cover a wide range of species diversity, the survey was performed in three collection sites in each area. Species identification was achieved by comparison with specimens of Indian herbarium, digital herbaria (e Floras, 2008; WCSP, 2012; The Plant List, 2013; POWO, 2019; GBIF, 2020; JSTOR, 2020 and The Herbarium Catalogue, 2021) and perusal of relevant literature. Both composition and richness of species in the areas of floodplain and residual relieves and verifying the pattern of ecological habitat, life period and flowering period as mentioned in Figs. 1-5 & Table 1-2.

RESULTS AND DISCUSSION

In the present investigation, 112 plant species belonging to 76 genera and 41 families were recorded from Ranipur Wild Life Sanctuary (Table 2, Fig. 1). Out of these 112 plant species, 54 species, 40 genera and 30 families belong to dicotyledons (Fig. 2) and remaining 58 species, 36 genera and 11 families belong to monocotyledons (Fig. 3). The dominant families are Cyperaceae (26 species), Poaceae (11 species), Asteraceae (5 species), Onagraceae (5 species), Linderniaceae (4 species), Araceae (4 species) Polygonaceae, Hydrocharitaceae, Commelinaceae, Lythraceae, Lemnaceae, Amaranthaceae with 3 species each (Fig. 4). The most dominant genus is Cyperus with 13 species followed by Ludwigia and Lindernia with 5 and 4 species, respectively. Observations showed that wetland hydrophytes were represented by 68 species, followed by emergent amphibious hydrophytes with 20 species, leaf floating hydrophytes with 8 species, free floating hydrophytes with 7 species, submerged attached hydrophytes with 5 species, suspended hydrophytes and shoot floating attached hydrophytes are represented by 2 species each (Fig. 5). According to ecological habitat68.75% (77 plant species) were annual, 11.61% (13 plant species) plurennial and 19.64% (22 plant species) annual/perennial (Table 1). The sanctuary area are free from the pollution but ponds, rivers, ditches, kunds and check dams near the human settlement have pollution to some extent. These polluted water body support the luxurious growthof Eichhornia crassipes, Nymphaea pubescens, Pistia stratiotes, Lemna paucicostata etc.

In this work, we observed the floristic diversity and the differences in vegetation composition between the sampled areas, which contribute to the heterogeneity found in the Aquatic and Marshy Habitats of Ranipur Wild Life Sanctuary. With regard to the both permanent and seasonal flooded environments, the presence of Cyperaceae, Poaceae, Asteraceae, Onagraceae and Linderniaceae increased the diversity of aquatic macrophytes. The high diversity of aquatic plants is a consequence of their different life forms which allow them to grow in different habitats and hydric conditions, as observed in wetland hydrophytes which supports the influence of the vegetation types on the floristic composition of the various geographical region of the world (Irgang et al., 1996; Scremin-Dias, 2000, 2011 and Bao et al., 2018). The river-plain interaction in flooding periods has been considered important to explain the similarities of different groups of aquatic organisms (Bao et al., 2014, 2018). Bornette et al. (1998) stated that understanding of such types of similarities may explain the patterns of species richness and rarity in wetlands, which allows to predict the community dynamics and to develop guidelines for biodiversity conservation. In the present study we also revealed that the species richness and abundance increase due to different capabilities of seed retention and also by the physiological factors and function of the submersed period.

Table1: General Information of the six studied a	areas of Ranipur Wild Life Sanctuary
--	--------------------------------------

S. N.	Areas*	Vegetation Type	Altitude	Soil Type	Geographic Coordinates Lat., long.	Species Richness	Genus Richness	Family Richness
1	CDAR	Deciduous Forest and floodable Meadow	188m	Sandy loam	25°01'15.515"N 81°9'57.350"E	95	52	31
2	CDBR	Deciduous Forest and floodable Meadow	226m	Sandy loam	24°59'56.522"N 81°10.129"E	99	64	38
3	SP	Meadow	237m	Clay- Sandy	25°1'17581" N 81°11'11.732"E	54	17	22
4	CFD	Deciduous Forest	244m	Sandy	24°59'15.875"N 81°10'25.698"E	49	18	15
5	UDWS	Meadow	191m	Sandy	25°3'29.808"N 81°11'55.524"E	62	24	23
6	РК	Deciduous Forest	206m	Sandy	25°2'05.112"N 81°11'002" E	72	38	29

(*Check Dam of Amha River: CDAR, Check Dam of Bardaha River: CDBR, Sakrauha Pond: SP, Chaupata Foothill Dam: CFD, Unchadih Dam Water Stream: UDWS and Panna Kund: PK)

S. No.	Plant species	Family	Ecological habitat*	Life period	Flowering period
Dicoty	ledons				•
1	Ranunculus sceleratus L.	Ranunculaceae	WLH	Annual	March-June
2	Nymphaea nouchliBurm.	Nymphaeaceae	LFA	Plurennial	AugNov.
3	Nymphaea pubescensWilld.	Nymphaeaceae	LFA	Plurennial	AugNov.
4	Nelumbo nucifera Gaertn.	Nelumbonaceae	LFA	Plurennial	AugOct.
5	Rorippa indica (L.) Hiern.	Brassicaceae	WL	Annual/Perennial	DecJune.
6	Bergia capensis L.	Elatinaceae	EA	Annual	Aug-Dec.
7	Corchorus capsularis L.	Tiliaceae	WL	Annual	SepDec.
8	Corchorus olitorius L.	Tiliaceae	WL	Annual	OctJan.
9	Oxalis corniculata L.	Oxalidaceae	WL	Plurennial	OctMarch
10	Oxalis debilis var. corymbosa (DC.) Lourteig	Oxalidaceae	WL	Plurennial	March-June
11	Aeschynomene indica L.	Fabaceae	EA	Plurennial	Mar Jun.
12	Sesbania bispinosa (Jacq.) WF Wight.	Fabaceae	EA	Plurennial	OctDec
13	Neptunia oleracea Lour.	Mimosaceae	FF	Annual/Perennial	OctJan.
14	Ammannia auriculata Willd.	Lythraceae	EA	Annual	AugJune
15	Ammannia baccifera L.	Lythraceae	EA	Annual	DecApril
16	Trapa natans L.	Lythraceae	LFA	Annual	SepJan.
17	Ludwigia octavalvis (Jacq.) P.H. Raven.	Onagraceae	EA	Annual	Round the year
18	Ludwigia adscendens (L.) Hara.	Onagraceae	FSA	Annual/Perennial	JanJune
19	Ludwigia hyssopifolia (G.Don) Excell.	Onagraceae	EA	Annual	Round the year
20	Ludwigia perennis L.	Onagraceae	EA	Annual	NovFeb.
21	Ludwigia prostrataRoxb.	Onagraceae	EA	Annual	NovApril
22	Centella asiatica (L.) Urban.	Apiaceae	WL	Annual	OctMarch
23	Eclipta prostrate L.	Asteraceae	WL	Annual/Perennial	Round the year
24	Enydra fluctuansLour.	Asteraceae	EA	Annual/Perennial	JanApril
25	Gnaphalium pensylvanicum Willd.	Asteraceae	WL	Annual	DecMay
26	Gnaphalium polycaulon Pers.	Asteraceae	WL	Annual	NovMarch
27	Sphaeranthus senegalensis DC.	Asteraceae	WL	Annual	DecApril
28	Sphenoclea zeylanica Gaertn.	Sphenocleaceae	WL	Annual	AugDec.
29	Hoppea dichotomaWilld.	Gentianaceae	WL	Annual	OctDec.

	1				
30	Nymphoides cristata (Roxb.) Kuntze.	Menyanthaceae	LFA	Annual/Perennial	JanMar.
31	Nymphoides indica (L.) Kuntze.	Menyanthaceae	LFA	Annual/Perennial	AugDec.
32	Hydrolea zeylanica (L.) Vahl.	Hydroleaceae	EA	Annual	NovMar.
33	Ipomoea aquaticaForssk.	Convolvulaceae	FSA	Plurennial	SepFeb.
34	Ipomoea Carnea Jacq.	Convolvulaceae	WL	Plurennial	Round the year
35	Bacopa monnieri (L.) Wettst.	Plantaginaceae	WL	Annual/Perennial	July-Dec.
36	Limnophila indica (L.) Druce.	Plantaginaceae	EA	Annual/Perennial	AugMar.
37	Mazus pumilus (Burm. F.) Steenis.	Phrymaceae	WL	Annual	NovApril
38	Lindernia anagalis (Burm.f.) Pennell.	Linderniaceae	WLH	Annual	AugDec.
39	Lindernia ciliata (Colsm.) Pennell.	Linderniaceae	WLH	Annual	July-Oct.
40	Lindernia cordifolia (Colsm.) Merrill.	Linderniaceae	WLH	Annual	SepOct.
41	Lindernia crustacea (L.) F. Muell.	Linderniaceae	WLH	Annual	SepOct.
42	Veronica anagallis-aquatica L.	Plantaginaceae	WLH	Annual	FebJune
43	Utricularia gibba subsp. exoleta (R.Br.) P.Taylor	Lentibulariaceae	SH	Annual	DecJune
44	Hygrophylla auriculata (Sch.) Heine.	Acanthaceae	WLH	Annual	Oct-Dec.
45	Phyla nodiflora (L.) Greene.	Verbenaceae	WLH	Annual	SepMarch
46	Plantago ovataForsk.	Plantaginaceae	WLH	Annual	SepMarch
47	Alternanthera sessilis (L.) R.Br.exDC.	Amaranthaceae	WLH	Annual	AugMar.
48	Amaranthus tenuifolius Willd.	Amaranthaceae	WLH	Annual	SepApril
49	Dysphania ambrosioides (L.) Mosyakin & Clemants	Amaranthaceae	WLH	Annual	Sep-Mar.
50	Mallotus polycarpus (Benth.) Kulju & Welzen	Euphorbiaceae	WLH	Annual	JanMar.
51	Persicaria hydropiper (L.) Delarbre	Polygonaceae	EAH	Annual/Perennial	AugMar.
52	Polygonum longisetumvar. rotundatum A.J. Li.	Polygonaceae	EAH	Plurennial	AugApril
53	Rumex dentatus L.	Polygonaceae	EAH	Annual/Perennial	JanJune
54	Ceratophyllum demersum L.	Ceratophyllaceae	SH	Annual	SepNov.
		Monocotyledons			
55	Hydrilla verticillata (L.F.) Royle.	Hydrocharitaceae	SAH	Plurennial	SepDec.
56	Ottelia alismoides (L.) Pers.	Hydrocharitaceae	SAH	Annual	SepDec.
57	Vallisnaria spiralis L.	Hydrocharitaceae	SAH	Annual	OctMar.
58	Eichhornia crassipes (Mart.) Solms.	Pontederiaceae	FFH	Annual	SepDec.
59	Monochoria hastata (L.) Solms.	Pontederiaceae	EAH	Annual	July-Nov.
60	Cyanotis axillaris (L.) D. Don ex Sweet	Commelinaceae	WLH	Annual	AugJan.
61	Cyanotis cristata (L.) D. Don	Commelinaceae	WLH	Annual	AugNov.
62	Murdannia nudiflora L. Brenan	Commelinaceae	WLH	Annual	AugNov.
63	Juncus bufonius L.	Juncaceae	WLH	Plurennial	JanMarch
64	Juncus prismatocarpus R.Br.	Juncaceae	WLH	Plurennial	OctApril
65	Typha domingensis Pers.	Typhaceae	WLH	Annual	OctMay
66	Pistia stratiotes L.	Araceae	FFH	Annual	AugNov.
67	Lemnaa equinoctialisWelw.	Araceae	FFH	Annual	May-June
68	Spirodela polyrhiza (L.) Schleid	Araceae	FFH	Annual	Feb. April
69	Wolfia arrhiza (L.) Schleid	Araceae	FFH	Annual	SepNov.
70	Sagettaria guayanensis Kunth	Alismataceae	EAH	Annual	SepOct.
70	Sagittaria sagittifolia L.	Alismataceae	EAH	Annual/Perennial	OctFeb.
72	Aponogeton crispus Thunb.	Aponogetonaceae	LFA	Annual/Perennial	AugNov.
73	Aponogeton natans (L.) Engle & Krause	Aponogetonaceae	LFA	Annual/Perennial	AugNov.
74	Potamogeton crispus L.	Potamogetonaceae	SAH	Annual	DecApril
74	Stuckenia pectinata (L.) Borner	Potamogetonaceae	SAH	Annual	JanApril
75	Bolboschoenus glaucus (Lam.) S.G.Sm.	Cyperaceae	WLH	Annual/Perennial	MarJuly
70	Bulbostylis barbata (Rottb.) C.B. Clarke	Cyperaceae	WLH	Annual	
77	Carex fedia Nees	• •	WLH WLH	Annual	FebSept. FebApril
78 79	÷	Cyperaceae	WLH WLH	Annual Annual/Perennial	June-Oct.
19	Cyperus compactus Retz.	Cyperaceae	WLFI	Annual/Perennial	Julie-Oct.

Floristic diversity of angiosperms in aquatic and marshy habitats within floodplain and residual relieves of Ranipur wild life sanctuary, U.P., India

		-			
80	Cyperus corymbosus Rottb.	Cyperaceae	WLH	Annual	JulDec.
81	Cyperus cuspidatus Kunth	Cyperaceae	WLH	Annual	AugDec.
82	Cyperus cyperoides (L.) O. Kuntze.	Cyperaceae	WLH	Annual	AugOct.
83	Cyperus difformis L.	Cyperaceae	WLH	Annual	SepNov.
84	Cyperus digitatus Roxb.	Cyperaceae	WLH	Annual	AugDec.
85	Cyperus dubius Rottb (Rottb.) Endle.	Cyperaceae	WLH	Annual	AugDec.
86	Cyperus exaltatus Retz.	Cyperaceae	WLH	Annual	SepDec.
87	Cyperus iria L.	Cyperaceae	WLH	Annual	AugOct.
88	Cyperus michelianus (L.) Delile	Cyperaceae	WLH	Annual	June-Oct.
89	Cyperusmichelianus (L.) Link.	Cyperaceae	WLH	Annual/Perennial	SepMay
90	Cyperus platystylis R.Br.	Cyperaceae	WLH	Annual	April-June
91	Cyperus tenuispica Steud.	Cyperaceae	WLH	Annual	April-Dec.
92	<i>Eleocharis atropurpurea</i> (Retz.) J. Presl & C.Presl	Cyperaceae	EAH	Annual/Perennial	Nov,-Mar.
93	Eleocharis palustris (L.) Roem. & Schult	Cyperaceae	EAH	Annual/Perennial	NovMar.
94	Fimbristylis bisumbellata (Forsk.) Bub.	Cyperaceae	WLH	Annual	NovMar.
95	Fimbristylis dichotoma (L.) Vahl	Cyperaceae	WLH	Annual	May-Oct.
96	Fimbristylis falcata (Vahl) Kunth	Cyperaceae	WLH	Annual	AugOct.
97	Fimbristylis littoralis Gaudich	Cyperaceae	WLH	Annual	SepMar.
98	Kyllinga brevifolia Rottb.	Cyperaceae	WLH	Annual/Perennial	AugOct.
99	Lipocarphas quarrosa (L.) Goetgh.	Cyperaceae	WLH	Annual	SepDec.
100	Rhynchospora colorata (L.) H. Pfeiff.	Cyperaceae	WLH	Annual	July-Oct.
101	Schoenoplectiella articulata (L.) Lye	Cyperaceae	EAH	Annual/Perennial	SepJan.
102	Brachiaria ramosaStapf.	Poaceae	WLH	Annual	July-Oct.
103	Brachiaria reptans (L.) C.A. Gardner & C.E. Hubb.	Poaceae	WLH	Annual	July-Oct.
104	Chrysopogon zizanioides (L.) Roberty.	Poaceae	WLH	Annual/Perennial	July-Nov.
105	Echinochloa colona (L.) Link	Poaceae	WLH	Annual	July-Nov.
106	Echinochloa crusgalli (L.) P.Beauv.	Poaceae	WLH	Annual	July-Nov.
107	<i>Hygroryza aristata</i> (Retz.) Nees ex. Wight and Arn.	Poaceae	FFH	Annual	OctNov.
108	Leptochloa panicea (Retz.) Ohwi	Poaceae	WLH	Annual	June-Sep.
109	Oryza rufipogon Giff.	Poaceae	WLH	Annual	OctNov.
110	Panicum paludosum Roxb.	Poaceae	WLH	Annual	July-Nov.
111	Paspalidium flavidum (Retz.) A. Camus	Poaceae	WLH	Annual	July-Nov.

(*Presence of ecological habitat-Free floating hydrophytes: FSH, Suspended hydrophytes: SH, Submerged attached hydrophytes: SAH, Leaf floating attached hydrophytes: LFA, Shoot floating attached hydrophytes: SFA, Emergent amphibious hydrophytes: EAH, Wetland hydrophytes: WLH.)

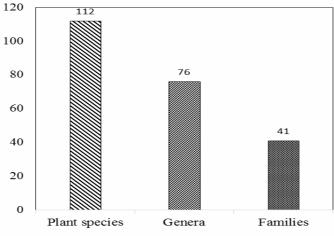
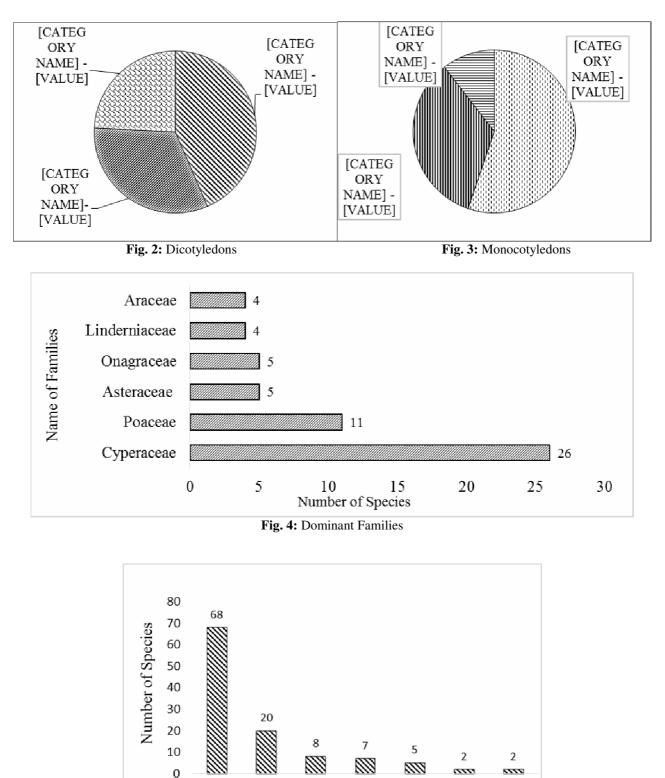




Fig. 1: General Scenario of Investigation

LFA

SFA

EAH

Fig. 5: Nature of Habitat

SAH

Acknowledgements

The authors are grateful to the Director, Botanical Survey of India, Kolkata for constant support and facilities. The authors are thankful to the Principal, Janta Mahavidyalaya Ajitmal, Auraiya U.P., India. Authors are thankful to Environment, Forest and Climate Change Department, Ranipur Wild Life Sanctuary, Region of Ranipur, Uttar Pradesh for extending logistic support during field visits. Authors are thankful to Dr. Brijesh Kumar,

FSH

SH

Botanical Survey of India, Central Regional Centre, Prayagraj, for providing relevant literatures.

WLH

REFERENCES

- Ansari, A.A. and Tiwari, A.P. (2014). Floristic analysis of Ranipur Wild Life Sanctuary, Uttar Pradesh. J. Non Timber For. Prod. 21(1): 45-52.
- Bao, F.; Leandro, T.D.; Da Rocha, M.; Dos Santos, V.S.; Stefanello, T.H.; Arruda, R.; Pott, A. and Damasceno-

Júnior, G.A. (2018). Plant species diversity in a Neotropical wetland: patterns of similarity, effects of distance, and altitude. *Anais da Academia Brasileira de Ciências*. 90(1): 85-97

- Bao, F.; Pott, Fa Ferreira, A. and Arruda, R. (2014). Soil seed bank of floodable native and cultivated grassland in the Pantanal wetland: effects of flood gradient, season and species invasion. *Braz. J. Bot.* 37: 239-250.
- Biswas, K. and Calder, C. (1937). *Hand Book of Common Water and Marsh plants of India and Burma*. Rep. 1984. Bishen Singh Mahendra Pal Singh. Dehradun.
- Bhattacharyya, U.C. and Malhotra, C.L. (1964). Botanical exploration in Hamirpur district (U.P) with special reference to Mahoba aquatics. *Bulletin of the Botanical Survey of India*. 6: 23-41.
- Bornette, G.; Amoros, C. and Lamoroux, N. (1998). Aquatic plant diversity in riverine wetlands: the role of connectivity. *Freshwater Biol.*, 39: 267-283.
- Brock, M.A. (2011). Persistence of seed banks in Australian temporary wetlands. *Freshwater Biol.* 56: 1312-1327.
- Capon, S.J. and Brock, M.A. (2006). Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. *Freshwater Biol.* 51: 206-223.
- Cattanio, J.H.; Anderson, A.B. and Carvalho, M.S. (2002). Floristic composition and topographic variation in a tidal floodplain forest in the Amazon Estuary. *Braz. J. Bot.*, 25: 419-430.
- Cook, C.D.K. (1996). *Aquatic and Wetland Plants of India*. Oxford University Press. Oxford.
- Costa, F.R.C.; Guillaumet, J.L.; Lima, A.P. and Pereira, O.S. (2009). Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. *J. Veg. Sci.* 20: 69-78.
- Cronk, J.K. and Fennessy, M.S. (2001). Wetland Plants: Biology and Ecology, Lewis Publishers, Boca Raton, Fla, 384 p.
- Diniz-Filho, Jaf; Siqueira, T.; Padial, A.A.; Rangel, T.F.; Landeiro, V.L. and Bini, L.M. (2012). Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in meta communities. *Oikos.* 121: 201-210.
- Duthie, J.F. (1903-1929) Flora of Upper Gangetic Plain and of the Adjacent Siwalik and Sub-Himalyan Tract. I and II Rep. 1994.Bishen Singh Mahendra Pal Singh, DehraDun.
- eFloras (2008). Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA. http://www.efloras.org.
- Ferreira, L.V. and Parolin, P. (2007). Tree phenology in Central Amazonian floodplain forest: effects of water level fluctuation and precipitation at community and population level. *Pesq. Bot.*58: 139-156.
- GBIF (2020). *GBIF Backbone Taxonomy*.https:// www.gbif.org/species/
- Gopal, B. (1990). *Ecology and Management of Aquatic Vegetation in the Indian subcontinent*. Kluwer Academic Publ. Dordrecht, Netherland.
- Hooker, J.D. (1872-1897). *The Flora of British India*, Vol. 1-7. Rep. 1994-2003. Bishen Singh Mahendra Pal Singh, Dehra Dun.
- Irgang, B.E. and Gastal, JR CVS. (1996). Macrófitas Aquáticas da planíciecosteira do RS. CPG -Botânica/UFRGS. Porto Alegre, 120 p.

- JSTOR (2020). JSTOR Global Plants. Ithaka. <<u>https://plants.jstor.org/</u>.
- Kozlowski T.T.; Kramer, P.J. and Pallardy, S.G. (1991). *The physiological ecology of woody plants*. Academic Press, San Diego, CA, 345 p.
- Maheshwari, J.K. and Tomar, R.P.S. (1983). A contribution to wetland flora of Sitapur district. U.P. *Journal of the Bombay Natural History Society*. 80: 529-538.
- Maliya, S.D. (2006). The Aquatic and Wetland Flora of Mainpuri district, U. P. India. *Journal of Economic & Taxonomic Botany*.30(3): 533-546.
- Muencher, W.C. (1994). *Aquatic plants of the United States*. Comstock Publ. Co. New York.
- Narain, S. and Mishra, S. (2008). A list of Aquatic & Marshy Plants of Bundelkhand Region (U. P.). *Indian Journal* of Forestry. 31(2): 301-308.
- Narain, S. and Singh, S.M. (2008). Aquatic and Marshy Angiosperms of Sarsainawar wetland of Etawah district Uttar Pradesh India. *Journal of Indian Botanical Society*. 87(3 & 4): 157-161.
- POWO (2019). *Plants of the World Online*. Facilitated by *the Royal Botanic Gardens*, Kew. http://www.plants oftheworldonline.org/.
- Raizada, M.B. (1976). Supplement to Duthie's Flora of Upper Gangetic Plains & of Adjacent Siwalik and Sub-Himalayan Tracts (Bishen Singh Mahendra Pal Singh, Dehradun).
- Ranjan, V. (1996). Aquatic, marshy and wetland plants of Lalitpur district. *Geobios New Reports*. 15: 44-48.
- Sahai, R. and Singh, A.B. (1968). A supplement to the aquatic & swampy vegetation of Gorakhpur India. *Indian Forester.* 94: 819-821.
- Sanchez, M.; Pedroni, F.; Eisenlohr, P.V. and Oliveira-Filho, A.T. (2013). Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, Southeastern Brazil, from near sea level to 1000 m of altitude. *Flora* 208: 184-196.
- Scremin-Dias, E. (2000). A plasticidadefenotípica das macrófitasaquáticasemresposta à dinâmicasazonal. In: Cavalcati TB and Walter BMT (Eds), Tópicos AtuaisemBotânica – Palestras convidadas do 51° Congresso Nacional de Botânica, Brasília, DF, 400 p.
- Scremin-Dias, E.; Lorenz-Lemke, A.P. and Oliveira, AKM (2011). The floristic heterogeneity of Pantanal and the occurrence of species with different strategies to water stress. *Braz. J. Biol.*, 71: 275-282.
- Sen, D.N. and Chatterjee, U.N. (1959). Ecological studies on the aquatic & swampy vegetation of Gorakhpur. *Agra University Journal of Research: Science*. 8: 1-14.
- Sharma, J.P. and Dhakre, J.S. (1993). Aquatic angiosperm of Shahjahanpur district, U.P. *Higher Plant Indian Subcontinent*, 4: 223-233.
- Singh, A.K. (2006). A Contribution to the Aquatic and Wetland flora of Varanasi. *Journal of Economic & Taxonomic Botany*.30(1): 6-24.
- Singh, L.J. and Ranjan, V. (Eds.) (2021). New Vistas in Indian FloraVol. 1 & 2,Bishen Singh Mahendra Pal Singh, Dehra Dun, Uttarakhand, India, pp. 417 & 819.
- Singh, A.K. and Singh, S.K. (1991). Aquatic & semi-aquatic plants of Deoria district. *Journal of Economic & Taxonomic Botany*. 21(3): 639-647.
- Singh, O.P. and Singh, S.K. (1972). Aquatic angiosperm of Jaunpur. *Bulletin of the Botanical Survey of India*. 14(1-4): 104-113.

- Sinha, B.K. and Dixit, R.D. (2000). Floristic and Ecological studies of Salon Wetland, Uttar Pradesh. *Prof. D. D. Nautiyal Communication* Volume *Recent Trends in Botanical Research.* 255-267.
- Sinha, A.K.; Srivastava, A. and Narayan, R. (1990). Ecological studies on lakes of Rae Bareli – II. Khurlake, Shivgarh. In: *Recent Trends in Limnology*. 407-409.
- Srivastava, A.K.; Dixit, S.N. and Singh, S.K. (1987). Aquatic angiosperm of Gorakhpur. *Indian Journal of Forestry*. 10(1): 46-51.
- Subramanyam, K. (1962). Aquatic Angiosperms: a systematic account of common Indian aquatic

angiosperms. *Botanical Monograph.* 3(1-6): 1-190. CSIR, New Delhi.

- The Herbarium Catalogue (2021). Royal Botanic Gardens, Kew. http://www.kew.org/herbcat.
- The Plant List (2013). Version 1.1. http://www.the plantlist.org/.
- Yadav, R.B.; Kumar, A.; Singh, L.J. and Verma, S.K. (2001). Weed Flora of Uttar Pradesh, India. In: Singh L.J. and V. Ranjan, (eds.), *New Vistas in IndianFlora*. Bishen Singh Mahendra Pal Singh, Dehra Dun, India, 2: 519-528.